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multigroup whose underlying set is a multiset. The genome is the entire set
of DNA instructions found within a cell which contains all the information
needed for an individual to develop and function. DNA and RNA are the
hereditary materials that play a vital role in the metabolism process of living
things, especially protein synthesis. In genomic database DNA sequences are
stored in the form of string or text data types. The only data that works with
machine learning algorithms is numerical. Thus, it is necessary to transform

DNA sequence strings to numerical values. This article is organized in the
following manner. Firstly, we prove that standard genetic code is a
multigroup and genome architecture of the whole population can be
interpreted as the sum of multisets. Next, it is described how a numerical
representation of DNA bases relates to its algebraic representation. We
further employed Gated Recurrent Unit, Long Short-Term Memory, and
Bidirectional Long Short-Term Memory to identify changes between the
DNA sequences. Experimental results show that GRU with multiset-based
numerical values for DNA bases offers 98% accuracy on testing data. This
novel technique will aid in the detection of mutations in complex diseases.

1. Introduction

In conventional set theory, repeating elements within a set is unacceptable. However, in real-
world situations, the recurrence of objects in a set cannot be neglected. For example, prime
factorization of natural numbers, consideration of repeated roots of polynomial equations,
frequent observations in statistical samples, and occurrence of hydrogen atoms within a water
molecule. The development of multiset theory started at the beginning of the 1970s. Several
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mathematicians presented various terms (list, bag, heap, bunch, sample, occurrence set, weighted
set, and fireset) in different contexts carrying synonymity with multiset by several authors [1]. The
term multiset noted by Knuth [2] was first suggested by de Bruijn [3].

The theory of multigroup via multiset was discussed by many researchers [4], but the most
acceptable concept of multigroups was given by Nazmul et al.,, [5] because it follows the non-
conventional groups mentioned before in the literature. Additional studies on the theory of
multigroups were discussed from time to time. The idea of submultigroup was elaborated in [6]. A
complete account on the premise of homomorphism and some homomorphic properties of
multigroups and factor multigroups were explained in [7,8]. Some results on normal
submultigroups of a multigroup were explicated in [9]. Direct Product of multigroups and its
generalization were established in [10]. Multigroup action on multiset was also discussed in a
previous study [11]. Some properties of multigroups were analyzed by Ejegwa and lbrahim [12].

A major challenge for today's and tomorrow's genomics is determining the genome architecture
(GA). Recent studies in genomics propose that certain mathematical biophysics rules must be
obeyed by GAs. The discovery of the double helix molecular structure of DNA by Watson and Crick
[13] in 1953, illustrated that genetic information in the form of sequences of nucleotides is stored
in DNA. A nucleotide is a key unit that tightens together to make nucleic acids. A nucleotide is made
up of a five-carbon sugar molecule binding to a phosphate group and a nitrogen base. DNA and
RNA are the main types of nucleic acids, which are made up of long chains of repeating nucleotides.
The base thymine (T) (DNA bases are A, C, G, T) in RNA is replaced with uracil (U) as shown in Figure
1.
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Fig. 1. DNA and RNA Structure

The first major task of molecular biology was to find out how the GC steers the synthesis of
proteins. A DNA molecule is translated into RNA through the process of transcription, which is
involved in protein synthesis. As a result of this whole process, the codons (triplets) are encoded.
Messenger RNA (mRNA) is a single-stranded nucleotide sequence that brings genetic information
from the DNA master molecule in the form of triplet codons. mRNA is about 5% of the total RNA in
the cell and is more heterogeneous in its coding region than all other RNA. Coding regions are the
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triplet codons, which are translated by the ribosomes (the protein factory) into one or many
proteins in eukaryotes and prokaryotes respectively. In coding regions, there is always a start codon
like AUG triplet in the beginning of sequence and UAA, UAG, or UGA at the end as stop codons
discussed by Goss et al., [32].

Crick et al., [14] in 1961 proposed that the GC is a set of rules for the translation of triplet code
(codon) into one amino acid. These triplet codes are called standard genetic code (SGC) [15]. This
fact is summarized in a table called the genetic code table (GCT) (See Table 4). For biology, the
importance of GCT cannot be overlooked. There are 64 codons (61 meaningful codons, i.e., codons
encoding amino acids, and three stop-codons) and only 20 amino acids (21 if including the stop
signal) come across in all living creatures. Different codons stand for the same amino acid. This
reality is pertained to degeneracy, which is an inexorable feature of the GCT. Degeneracy is
correlated with and an outcome of symmetry that behaves as an organizing rule in which genetic
information is stored and the way, it controls the protein synthesis process. This idea is the soul of
the algebraic approach to interpreting the structure that arises from the GC [16].

Genetic code (GC) has been represented by a variety of algebraic structures, which help look at
the consequence of the noteworthy linkage between protein-coding regions among the coding
apparatus and the mutational process [17]. From a mathematical perspective, a GC resembles a 3D
cube, following steady phylogenetic analyses of protein-coding regions of DNA. The importance of a
suitable algebraic structure of GC cannot be ignored because it is useful to understand the semantic
properties of codes and can help us explain the gene evolution process.

In the late 19th century, various mathematical models were proposed to interpret the genetic
code (GC) of DNA bases in binary form. These binary representations necessitate the existence of a
partial order on the set of sixty-four codons. These partial orders are centered on the chemical
types of bases (purine and pyrimidine) and their hydrogen bond numbers. By assuming that DNA
bases with the same hydrogen bond number but different chemical types are complementary
elements, a Boolean lattice for DNA bases is constructed. This complementary behavior led Sanchez
et al., [18,19] and Sanchez and Grau [20] to propose two Boolean lattices for the GC that are dual to
each other.

Grau et al., [21] constructed a GC ring that isomorphic to the ring of integers modulo 64 using
these codon properties for GC analysis. They also suggested that endomorphisms and
automorphisms could describe gene mutation pathways. Moreover, Sanchez et al., [22] defined the
Galois field of order 64 for the codons. Then they constructed a finite-dimensional vector space
over their proposed field by taking the cross-product of a finite number of copies of the field into
consideration. Vector space is a replication of DNA sequences. Linear operators defined in this
vector space indicate gene mutation in wild-type genes. Later, Sdnchez and Grau [17] proposed that
the primary divisions of the genetic code table (GCT) could be developed as equivalence classes
from the quotient GC vector spaces over the Galois field of the four bases. This newly established
algebraic structure focuses on significant connections between algebraic patterns, codon
assignments, and the physicochemical properties of amino acids. Additionally, Sdnchez [23] further
developed the symmetric group (CG, o) related to the genetic code cubes . Sdnchez and Grau [24]
showed that the present GC structure could be obtained from a former coding architecture by using
the additional letter D in the four DNA alphabets for predicting quantitatively the relatedness of GA
from the same population or closely related species.

Aisah et al., [25] suggested together with three letters D, O, P into the four DNA alphabets that
are A, C, G, and T, and exploring the algebraic structure of the Abelian group C543; under addition
which forms a vector space of dimension one over GF(7%)). Sanchez and Barreto initiated that GC
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can be represented as a direct sum of homocyclic abelian groups and proposed this result can be
extended to the whole genome defined on the GC. Similar canonical decomposition into p-groups
can be considered to the alike species of population's GA [26]. Riaz et al., [27] designed codes over
lattice-valued intuitionistic fuzzy sets to analyze complex DNA structures.

Mutations are random changes, which affect the DNA sequence of living creatures. Mutations
can result from structural changes in a gene. Hereditary disorders and even cancer can result from
harmful mutations. The current need is to investigate the genetic mutations that raise the risk of
developing disorders in a person on a genetic basis.

To analyze DNA sequences through ML algorithms, the DNA sequences should be converted
into numeric sequences. For this purpose, the Voss representation mapping system is a popular
choice. However, a lot of other techniques has also been introduced including, the tetrahedron, the
guaternion, the integers, the real numbers, and the complex numbers [28]. The previously
discussed numerical representations are ad hoc codifications, not algebraic representations. In
recent years, genetic code algebraic structures have been introduced that give numerical values to
DNA bases referring to their algebraic representation. Various related references are previously
cited in this article.

Various recent works based on deep learning (DL) techniques analyze changes and mutation of
the DNA sequences in one of the works the authors [29], presented RNN technique to discover
mutant sequences from metagenomes. A deep learning technique method for encoding meaningful
nucleotide sequences and an attention-based long short-term memory (LSTM) network was
discovered by Liu et al.,, [30]. A convolutional neural network (CNN)-based technique was
developed by Tampuu et al., [31] that accepts raw DNA sequences and outputs the probability that
the input sequence is viral.

In our recent study, we have introduced multigroup structure for DNA sequences and proposed
that the whole genome can be represented as a sum of multiset. Then we represent a novel
numerical mapping technique by representing DNA sequence to multiset-based n; and average
frequency. Further, the extracted frequency for DNA sequences is fed into the Gated Recurrent Unit
(GRU), Long Short-Term Memory (LSTM), and bidirectional LSTM models to detect changes in DNA
sequence. In the end, visual representations of the spectrograms using both mapping techniques
were added, which provided a way to compare the two DNA sequences.

2. Preliminaries

A set-like structure in which well-defined elements can present multiple times is called a
multiset e.g. M ={a,a,b,c,c,c,d} is a multiset. It is customary to denote multiset M as
{2/a,1/b,3/c,1/d}. Let X be a set of elements, then a multiset M over X is a function
Cy :X—> N where N={0,1,2,...}. For each x € X,Cy(x) denotes the number of times x
presentin M . A multiset M is anordinarysetif Cy(x) =0 or 1 V x € X [2].

The collection of all multisets over X such that no element in the multiset occurs more than n
times is called multiset space and is denoted by X™ . Formally, if X = {xq,x,,...,x;} then X" =
{{ny/x,ny/x0, ..oy /xd | i=12,...,k; n; €{0,1,2,...,n}} . The set X* s the set of all
multisets over X such that there is no limit on the occurrences of an element in a multiset [3].

If M and N are multisets drawn from a set, X then M and N are equal if and only if
Cy(x)=Cy(x) Vx€eX.If M and N are multisets drawn from a set X , then the sum and
subtraction of M and N denoted by M+ N and M — N is defined as Cpon(x) = Cy(x) +
Cy(x) and Cp_ny(x) = max{Cy(x) — Cy(x)}) respectively. If M is a multiset drawn from a set,
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X then 2M and 3M represent the sum M + M and M + M + M respectively. In general, kM
represent the sum of k M’s [27].

Multiset sum operation satisfies commutativity (i.e., +N = N + M ) and associativity (i.e., (M +
N)+ P =M+ (N + P)) [28]. The union and intersection of two multisets M and N drawn from
aset X isdenoted by MUN and M NN is defined by Cpyun(x) = max{Cy(x),Cy(x)} and
Cynn (x) = min{Cy (x),Cy(x)} respectively. Let M, N € X™ .Then M is called a submultiset of
N (MCN) if Cy(x)<Cy(x) forall xeX . M isa proper submultiset of N (M c N) if
Cu(x) < Cy(x) V x € X and there exists at least one x € X such that Cy(x) < Cy(x) [3].

Suppose that M is a multiset, then the cardinality of M denoted by card(M), is defined as
card(M) = Yyex Cy(x) . If M is a submultiset of N, then card(N) = card(M) [28].

Let X™ and Y™ are multiset spaces over X and Y respectivelyand f : X =Y be a map,
then an image f (M) and preimage f~1(N) of multisets M € X™ and N € Y™ are defined as:

Voo 10 Cy(u) iff7I(0) # ¢
c v={uf<v>M Vo evY.
f(M)( ) 0 otherwise

And Cp-1yy(u) = Cy(f(w)) Vu € X.
Let X be a group. A multiset M over X is called a multigroup over X if the count function
Cy @ X — N, satisfies:
CM(X_')/) < CM(X) /\CM(_’)/),V X,y € X'
Cu(x™) < Cy(x),V x€X.
It follows that,

Cy(x™) = Cy(x),V x € X since Cy(x) = CM((x_l))_1 = Cy(x=H),v x € X [3].

3. Multiset Representation of Genetic Code

Let X be a non-empty set of bit strings {00,01,10,11}. X forms a group under the bitwise
binary operation XOR which gives result 0 if both inputs are the same but give 1 if both inputs
are different with each other as shown in the see Table 1.

Table 1

Group of bit strings

XOR 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

DNA basis {G,A,T,C} can be classified by considering strong (S = G,C) or weak (W =A,T)
number of hydrogen bonds, purine (R = A, G) or pyrimidine (Y =T, C) chemical type and amino
(M =A,C) orketo (K =G,T) chemical groups for the four DNA bases. According to the above
classification criterion, there are 24 ordered sets for DNA basis. There is a freedom of choice in
labelling 2-bit identifier to each of the four DNA basis. The first and second bits can be 0 or 1 for
S,W,Y,R,M and K. Table 2 shows that there are 24 ways to label 2-bit identifiers to the four DNA
bases.
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Table 2
2-bit identifier labeling to the DNA basis

First Bit Binary Labelling  Second bit Binary Labelling

S(G,C)/W(AT) G,C=1,AT=0 Y(T,C)/R(A, G) T, C=0, A, G=1

T,C=1, A, G=0

M (A, C)/ K(G, T) A, C=0,G, T=1

A, C=1,G, T=0

G,C=0,A,T=1 Y(T,C)/R (A G) T,C=0, A, G=1

T,C=1, A, G=0

M (A, C)/K (G, T) A, C=0,G, T=1

A C=1,G,T=0

Y (T, C)/R (A, G) T,C=0, A, G=1 S(G,C)/W (A T) G,C=1,A,T=0

G,C=0,A,T=1

M (A, C)/K (G, T) A, C=0,G,T=1

A, C=1,G, T=0

T,C=1, A, G=0 S(G,C)/W(A,T) G,C=1,A T=0

G,C=0,A,T=1

M (A, C)/ K (G, T) A, C=0, G, T=1

A, C=1,G, T=0

M (A, C)/K (G, T) A C=0,G,T=1 S(G,C)/W (A T) G,C=1,A,T=0

G, C=0,A,T=1

Y (T, C)/R (A, G) T,C=0, A, G=1

T,C=1, A, G=0

A, C=1,G, T=0 S(G,C)/W(A,T) G,C=1,A,T=0

G,C=0,A,T=1

Y (T, C)/R (A, G) T, C=0, A, G=1

T,C=1, A, G=0

For Example, let ¢ & 00,4 & 01,T & 10,C < 11, which shows a binary representation of
DNA bases {G,A,T,C} denoted as S(X). The order of DNA base is considered by using several
hydrogen bonds (strong/weak) and the first bit is 1 for Y (T, C) and 0 for R (A, G) and the second bit
is 1 for M (A, C) and 0 for K (G, T). Table 3 shows that S(X) form group of DNA basis.

Table 3
S(X) Group of DNA basis

o> 0

O3> 00
>0 0> >
a0 =34
Q> 00

By taking the direct product of 3 copies of S(X) thatis S(X) X S(X) X S(X) give us a group of
64-codons which is GC as shown in Table 4.
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Table 4

The standard genetic code table

Second base position

G

GGG
GGA
GGT
GGC
AGG
AGA
AGT
AGC
TGG
TGA
TGT
TGC
CGG
CGA
CGT
CGC

|First base position|

o002 0000

A

GAG
GAA
GAT
GAC
AAG
AAA
AAT
AAC
TAG
TAA
TAT
TAC
CAG
CAA
CAT
CAC

T

GTG
GTA
GTT
GTC
ATG
ATA
ATT
ATC
TTG
TTA
TTT
TTC
CTG
CTA
CTT
CTC

C

GCG
GCA
GCT
GCC
ACG
ACA
ACT
ACC
TCG
TCA
TCT
TCC
CCaG
CCA
CCT
Ccc

o o0d00d>00->0

|uomsod aseq pJ!qJ_l

Consider a multiset S = {48/G,48/A,48/T,48/C} over S(X), where 48 is the count of each
DNA base in the standard genetic code table. S forms a multigroup by defining the count function
Cs : S(X) = N and satisfying conditions of multigroup for all x € S(X). In fact, S is standard
genetic code multigroup whatever order and classification of DNA basis have been considered and
2-bit identifier labeling for these bases has been taken out of 24 possibilities. In this scenario, it is
evident that a gene of any length has a representation of kS+ submultisets of S, where k is some
positive integer. Corresponding to the 24 ordered sets for DNA basis, which isomorphic groups.
This result indicates that it is possible to study GA of whole population within the framework of
sum of multisets, which provide an error-free and consistent presentation of genome sequencing

data. This representation is illustrated in Algorithm 3.1 followed by examples.

3.1 Algorithm
® (Consider DNA sequence string

® from collections import Counter
dnal = ‘ATG.... TAA
a = counter (dnal)
print (a)

output: Counter (dnal = {'A":ny,'T":n,,'C':n3,'G': ny})
® Breaking n; =48 + 48 + .-+ d; such that d < 48 is some positive integer, where i =

1,2,3,4.

® DNA Sequence= kS+ Submultisets of S, where k is some positive integer.

3.1.1 Example
mecA gene (Methicillin resistance gene)

Name: Staphylococcus aureus subsp. Aureus NCTC 8325 chromosome, complete genome

GenBank Accession: NC-007795.1
Sequence length (bp): 720

TGAGAATAGAACGAGTAGATGATACAACTGT

TTGTTTATAACATATAGCGATATCGAGGCCCGTGG
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TTTAGTCGTGAAGATTTATGGAC TCGC CGTGGCGAAGAATTCTTTTGGTCAATGATGGATG T

CGAAGAAGAAGATTTTGTTGTAGAAGGTCCATTATGGATTCAAGTACATGCCTTTG GGTGTCG
GTCACAATTTCT TCT TGAAGATATGATGAATATGTCTGATGATGATGCAACTGATCAATTTGATG
CAAGTTCAAGAATTGTTAGCTC CATTAGAAGGTGAAGATCAATTAGAAGAATTATTCGAGCAACG
C G GAAGCTCAAGGTTCT CGTC GTCTTCAGCACGT TACAAGAACAATCATTG

TG TTTAACGATTTAGAAGATGTTATTAATTATGCATATCATAGCAATCCAATAACTACAGAGTTTGAAG
TTTGTTATATATGGTTGATGGTACTTATTATTATGCTGTATATTTTGATAGTCATGTTGATCAAGAAGTCATT
TGATAGTTACAGTCAATTGCTTGAATTTGCTTATCCAACAGACAGAACAGAAGTTTATTT TGACTATGC
T TAATTATGAGTCATAACGTAACAGCTCAAGTTCGACGTTATTTTCCAGAGACAACTGAAT

A multiset over the above gene is

E ={275/A,217/T,138/G,90/C}.

One could see that E =S+, +3I; + ], + 1, + I3 is the sum of submultisets of S where,
I, = {48/A,48/T,0/G,0/C}, I, = {48/A,25/T,0/G,0/C}, 13 = {35/A4,0/T,0/G,0/C}, =
{48/G,0/C,0/A,0/T},and J, = {42/G,42/C,0/A,0/T} are submultisets of S.

Note that if X = {A,T,G,C} and Y ={G,C,A, T} are groups of DNA bases, where A <
00, T & 01,G < 10,C & 11 and G<00,Ce01,A<10,T & 11 are their binary
representation respectively. And S is standard genetic code multigroup over X and Y. Then I; =
{48/A,48/T,0/G,0/C}, I, = {48/A,25/T,0/G,0/C}, I3 = {35/A4,0/T,0/G,0/C} are
submultigroups of S corresponding to X and J; = {48/G,0/C,0/A,0/T}, J, = {42/G,42/C,0/
A,0/T} are submultigroups of S correspondingto Y.

3.1.2 Example

INS gene

Name: INS gene (Homo Sapiens INS gene, partial)

GenBank Accession: AJ009655.1

Sequence length (bp): 1393
GCAGGTCTGTTCCAAGGGCCTTTGCGTCAGGTGGGCTCAGGGTTCCAGGGTGGCTGGACCCCAGGCLCCC
GCTGTGCAGCAGGGAGGACGTGGCTGGGCTCGTGAAGCATGTGGGGGTGAGCCCAGGGGCCCCAAGGC
GGGCACCTGGCCTTCAGCCTGCCTCAGCCCTGCCTGTCTCCCAGATCACTGTCCTTCTGCCATGGCCCTGTGG
TGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGGACCTGACCCAGCCGCAGCCTTTGTGAACC
CACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGCTTCTTCTACACACCC
GACCCGCCGGGAGGCAGAGGACCTGCAGGGTGAGCCAACCGCCCATTGCTGCLLLTGGLLGLCCCCAGCC
CCCCCTGCTCCTGGCGCTCCCACCCAGCATGGGCAGAAGGGGGCAGGAGGCTGCCACCCAGCAGGGGGTC
GGTGCACTTTTTT GAAGTTCTCTTGGTCACGTCCT GTGACCAGCTCCCTGTGGCCCAGTCAG
TCTCAGCCTGAGGACGGTGTTGGCTTCGGCAGCCCCGAGATACATCGAGGGTGGGCACGCTCCTCCCTCC
CTCGCCCCTC C TGCCCCGCAGCCCATTTCTCCACCCTCATTTGATGACCGCAGATTCAAGTGTTTTGT
TAAGT GTCCTGGGTGACCTGGGGTCACAGGGTGCCCCACGCTGCCTGCCTCTGGGCGAACACCCCATC
CGCCCGGAGGAGGGCGTGGCTGCCTGCCTGAGTGGGCCAGACCCCTGTCGCCAGCCTCACGGCAGCTCC
GTCAGGAGATGGGGAAGATGCTGGGGACAGGCCCTGGGGAGAAGTACTGGGATCACCTGTTCAGGCTCC
CACTGTGACGCTGCCCCGGGGCGGGGGAAGGAGGTGGGACATGTGGGCGTTGGGGCCTGTAGGTCCACAC
CCAGTGTGGGTGACCCTCCCTCTAACCTGGGTCCAGCCCGGCTGGAGATGGGTGGGAGTGCGACCTAGGCT
GGCGGGCAGGCGGGCACTGTGTCTCCCTGACTGTGTCCTCCTGTGTCCCTCTGCCTCGCCGCTGTTCCGGAAC
CTGCTCTGCGCGGCACGTCCTGGCAGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTG
CAGCCCTTGGCCCTGGAGGGGTCCCTGCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGCATCTGCTCC
CTCTACCAGCTGGAGAACTACTGCAACTAGACGCAGCCTGCAGGCAGCCCCACACCCGCCGLLTCTGLACCG
GAGAGATGGAAT GCCCTTGAACCAGC
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A multiset over above gene is
F ={456/C,447/G,255/T,235/A}.

One canseethat F =4S + 5K; + K, + L; + L, is the sum of submultisets of S.

Note that if X ={C,G,T,A} and Y ={T,A,C,G} are groups of DNA bases, where C <
00,6 < 01,A < 10,T & 11 and T < 00,A<01,G <10,C & 11 are their binary
representation respectively. And S is standard genetic code multigroup over X and Y. Then

K, = {48/C,48/G,0/T,0/A}, K, = {24/C,15/G,0/T,0/A} are submultigroups of S
corresponding to X and L, ={48/T,43/A4,0/G,0/C},L, ={15/T,0/A,0/G,0/C} are
submultigroups of S correspondingto Y.

4. Numerical Mapping technique

A new mapping technique which is a multiset-based numerical mapping technique is applied in
this work. A multiset over mecA gene of sequence length 720 bp is E = {275/A,217/T,138/
G,90/C} represent the count of each base in DNA sequence. Algorithm 3.1 is used to take an
average of the frequencies of each nucleotide in the DNA sequence. Since it is already proved that
every DNA sequence can be written as the sum of multisets of S, an average of multiples of 48 on
each nucleotide gives the average frequency for the DNA bases. The Average frequency values of
DNA bases for the above DNA sequence are as follows A = 45.8,T = 43.4,G = 46.0,C = 45.0.
Dataset used for analysis is given in Table 5.

Table 5

Dataset uses for the analysis
Index Access number

1 KT279557.1

2 KT279556.1

5. Training of Models

Applications of natural language processing (NLP) include chatbots, machine translation,
sentiment analysis, speech recognition, and more. To perform these tasks, NLP systems often rely
on artificial neural networks (ANNs), which are models that mimic the structure and function of
biological neurons. Sequential data is processed by a specific type of ANN called Recurrent neural
networks (RNN). These are comprised of feed-forward neural networks, and their behavior is
identical to that of human brains. The RNN uses each node as a memory cell to aid this network so
that it can be able to remember the sentence's context [32-34].

Since machine learning algorithms only require numbers [35], in our recent experiment, we
used multiset-based average frequency and count nucleotide mapping for numerical conversion of
DNA sequence. A flow chart of the proposed is provided in the following Figure 2.
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Fig. 2. Flow chart of the proposed method

We trained the LSTM, GRU and bidirectional LSTM model on a subsequence of our reference
gene. For this experiment, a subsection of the gene is used. Three Machine Learning models LSTM,
GRU, and Bidirectional LSTM were used for learning. TensorFlow library is used in Jupyter
notebook. First, convert nucleotide sequence to a numerical index, and a sequence length of 50 is
used to construct the array for learning. Two numerical mapping techniques are used to digitize the
sequential data, frequency of each DNA base, and multiset-bases average frequency of each DNA
base in a DNA sequence. The models are tested for both mapping techniques. The training and
validation accuracy of GRU model on 50 epochs achieved an accuracy of 98.50 % using multiset-
based n; average frequency of DNA bases. Figure 3 provides the accuracy comparison for GRU
model between the count nucleotides mapping and multiset-based n; average mapping.
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Fig. 3. Accuracy comparison for GRU model

Insufficient information is provided by count nucleotide mapping to enable the models to
discriminate between changed and unchanged sequences. LSTM and BLSTM seem less appropriate
for this task than GRU. However, numeric values through count nucleotide frequency of DNA bases
do not get the required level of accuracy which is given in Table 6.

Table 6. Accuracy, Sensitivity and Precision results

Numerical mapping techniques Models Accuracy (%) Sensitivity Precision (%)
(%)

Count nucleotide mapping LSTM 47.95 0.00 0.00

BLSTM 41 0.00 0.00

GRU 47.95 0.00 0.00
multiset-based n;-average LSTM 49.42 0.00 0.00
frequency of nucleotide BLSTM 47.95 0.00 0.00

GRU 98.50 97.31 99.80

6. Spectrogram Analysis

The spectrograms visualisations offer a means of contrasting the two DNA sequences and the
two distinct mapping techniques. These graphics aid in our comprehension of why the multiset-
bases n; -average frequency mapping approach would have yielded better results in the machine
learning models, especially for the GRU model. The four nucleotides (A, T, C, and G) are
represented by the y-axis, and the position along the sequence is indicated by the x-axis. With
brighter colours (yellow) denoting higher counts and darker colours (blacker) denoting lower
counts, the colour intensity represents the number of each nucleotide in a specific window.

Multiset-bases n; average frequency offers a normalized view of the data, which may facilitate
the models' ability to identify subtle variations amongst sequences whereas the count nucleotides
mapping provides a direct representation of the data. Sequence 1 Sequences 1 and 2 exhibit similar
patterns, indicating that these sequences are highly identical. The patterns we observe may be
indicative of many DNA functional domains, including structural motifs, regulatory elements, and
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coding sections. The sequences' strong similarity suggested the possibility that they are closely
related or identical alleles of the same gene (see Figure 4).

Spectrogram-like Visualization of DNA Sequences
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Fig. 4. Visualizations of two sequences using two different mapping methods

7. Conclusions

Multiset theory plays an important role in practical problems. This manuscript depicts that
stranded genetic code is a multigroup and genome of any species has a representation of the sum
of multisets which presents genome sequencing data in a useful and meaningful manner. We
compared two numerical mapping techniques to convert DNA sequence data to numerical values.
Additionally, we tested three ML models to detect changes in the DNA sequences. The multiset-
based n; average frequency mapping provides more informative features than count nucleotide
mapping, allowing the GRU model to learn effectively. Spectrogram visualization of proposed
Mapping demonstrates how accumulating mutations change the global genetic profile. The high
similarity between the sequences suggests they might be alleles of the same gene or closely related
genes. In the future, this novel technique could be used to detect mutations for early prediction of
complex diseases.
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