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Investigating algebraic structures in a non-conventional framework 
supplements mathematics for hard-nosed practical applications to the fields 
of theoretical biology and computer science. One such algebraic structure is 
multigroup whose underlying set is a multiset. The genome is the entire set 
of DNA instructions found within a cell which contains all the information 
needed for an individual to develop and function. DNA and RNA are the 
hereditary materials that play a vital role in the metabolism process of living 
things, especially protein synthesis. In genomic database DNA sequences are 
stored in the form of string or text data types. The only data that works with 
machine learning algorithms is numerical. Thus, it is necessary to transform 
DNA sequence strings to numerical values. This article is organized in the 
following manner. Firstly, we prove that standard genetic code is a 
multigroup and genome architecture of the whole population can be 
interpreted as the sum of multisets. Next, it is described how a numerical 
representation of DNA bases relates to its algebraic representation. We 
further employed Gated Recurrent Unit, Long Short-Term Memory, and 
Bidirectional Long Short-Term Memory to identify changes between the 
DNA sequences. Experimental results show that GRU with multiset-based 
numerical values for DNA bases offers 98% accuracy on testing data. This 
novel technique will aid in the detection of mutations in complex diseases. 
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1. Introduction 

In conventional set theory, repeating elements within a set is unacceptable. However, in real-
world situations, the recurrence of objects in a set cannot be neglected. For example, prime 
factorization of natural numbers, consideration of repeated roots of polynomial equations, 
frequent observations in statistical samples, and occurrence of hydrogen atoms within a water 
molecule. The development of multiset theory started at the beginning of the 1970s. Several 
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mathematicians presented various terms (list, bag, heap, bunch, sample, occurrence set, weighted 
set, and fireset) in different contexts carrying synonymity with multiset by several authors [1]. The 
term multiset noted by Knuth [2] was first suggested by de Bruijn [3]. 

The theory of multigroup via multiset was discussed by many researchers [4], but the most 
acceptable concept of multigroups was given by Nazmul et al., [5] because it follows the non-
conventional groups mentioned before in the literature. Additional studies on the theory of 
multigroups were discussed from time to time. The idea of submultigroup was elaborated in [6]. A 
complete account on the premise of homomorphism and some homomorphic properties of 
multigroups and factor multigroups were explained in [7,8]. Some results on normal 
submultigroups of a multigroup were explicated in [9]. Direct Product of multigroups and its 
generalization were established in [10]. Multigroup action on multiset was also discussed in a 
previous study [11]. Some properties of multigroups were analyzed by Ejegwa and Ibrahim [12]. 

A major challenge for today's and tomorrow's genomics is determining the genome architecture 
(GA). Recent studies in genomics propose that certain mathematical biophysics rules must be 
obeyed by GAs. The discovery of the double helix molecular structure of DNA by Watson and Crick 
[13] in 1953, illustrated that genetic information in the form of sequences of nucleotides is stored 
in DNA. A nucleotide is a key unit that tightens together to make nucleic acids. A nucleotide is made 
up of a five-carbon sugar molecule binding to a phosphate group and a nitrogen base. DNA and 
RNA are the main types of nucleic acids, which are made up of long chains of repeating nucleotides. 
The base thymine (T) (DNA bases are A, C, G, T) in RNA is replaced with uracil (U) as shown in Figure 
1. 

  

 
Fig. 1. DNA and RNA Structure 

 
The first major task of molecular biology was to find out how the GC steers the synthesis of 

proteins. A DNA molecule is translated into RNA through the process of transcription, which is 
involved in protein synthesis. As a result of this whole process, the codons (triplets) are encoded. 
Messenger RNA (mRNA) is a single-stranded nucleotide sequence that brings genetic information 
from the DNA master molecule in the form of triplet codons. mRNA is about 5% of the total RNA in 
the cell and is more heterogeneous in its coding region than all other RNA. Coding regions are the 
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triplet codons, which are translated by the ribosomes (the protein factory) into one or many 
proteins in eukaryotes and prokaryotes respectively. In coding regions, there is always a start codon 
like AUG triplet in the beginning of sequence and UAA, UAG, or UGA at the end as stop codons 
discussed by Goss et al., [32].  

Crick et al., [14] in 1961 proposed that the GC is a set of rules for the translation of triplet code 
(codon) into one amino acid. These triplet codes are called standard genetic code (SGC) [15]. This 
fact is summarized in a table called the genetic code table (GCT) (See Table 4). For biology, the 
importance of GCT cannot be overlooked. There are 64 codons (61 meaningful codons, i.e., codons 
encoding amino acids, and three stop-codons) and only 20 amino acids (21 if including the stop 
signal) come across in all living creatures. Different codons stand for the same amino acid. This 
reality is pertained to degeneracy, which is an inexorable feature of the GCT. Degeneracy is 
correlated with and an outcome of symmetry that behaves as an organizing rule in which genetic 
information is stored and the way, it controls the protein synthesis process. This idea is the soul of 
the algebraic approach to interpreting the structure that arises from the GC [16].  

Genetic code (GC) has been represented by a variety of algebraic structures, which help look at 
the consequence of the noteworthy linkage between protein-coding regions among the coding 
apparatus and the mutational process [17]. From a mathematical perspective, a GC resembles a 3D 
cube, following steady phylogenetic analyses of protein-coding regions of DNA. The importance of a 
suitable algebraic structure of GC cannot be ignored because it is useful to understand the semantic 
properties of codes and can help us explain the gene evolution process. 

In the late 19th century, various mathematical models were proposed to interpret the genetic 
code (GC) of DNA bases in binary form. These binary representations necessitate the existence of a 
partial order on the set of sixty-four codons. These partial orders are centered on the chemical 
types of bases (purine and pyrimidine) and their hydrogen bond numbers. By assuming that DNA 
bases with the same hydrogen bond number but different chemical types are complementary 
elements, a Boolean lattice for DNA bases is constructed. This complementary behavior led Sánchez 
et al., [18,19] and Sánchez and Grau [20] to propose two Boolean lattices for the GC that are dual to 
each other. 

Grau et al., [21] constructed a GC ring that isomorphic to the ring of integers modulo 64 using 
these codon properties for GC analysis. They also suggested that endomorphisms and 
automorphisms could describe gene mutation pathways. Moreover, Sánchez et al., [22] defined the 
Galois field of order 64 for the codons. Then they constructed a finite-dimensional vector space 
over their proposed field by taking the cross-product of a finite number of copies of the field into 
consideration. Vector space is a replication of DNA sequences. Linear operators defined in this 
vector space indicate gene mutation in wild-type genes. Later, Sánchez and Grau [17] proposed that 
the primary divisions of the genetic code table (GCT) could be developed as equivalence classes 
from the quotient GC vector spaces over the Galois field of the four bases. This newly established 
algebraic structure focuses on significant connections between algebraic patterns, codon 
assignments, and the physicochemical properties of amino acids. Additionally, Sánchez [23] further 
developed the symmetric group (CG, ∘) related to the genetic code cubes . Sánchez and Grau [24] 
showed that the present GC structure could be obtained from a former coding architecture by using 
the additional letter D in the four DNA alphabets for predicting quantitatively the relatedness of GA 
from the same population or closely related species.  

Aisah et al., [25] suggested together with three letters D, O, P into the four DNA alphabets that 
are A, C, G, and T, and exploring the algebraic structure of the Abelian group 𝐶343  under addition 
which forms a vector space of dimension one over  𝐺𝐹(73)). Sanchez and Barreto initiated that GC 
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can be represented as a direct sum of homocyclic abelian groups and proposed this result can be 
extended to the whole genome defined on the GC. Similar canonical decomposition into p-groups 
can be considered to the alike species of population's GA [26]. Riaz et al., [27] designed codes over 
lattice-valued intuitionistic fuzzy sets to analyze complex DNA structures. 

Mutations are random changes, which affect the DNA sequence of living creatures. Mutations 
can result from structural changes in a gene. Hereditary disorders and even cancer can result from 
harmful mutations. The current need is to investigate the genetic mutations that raise the risk of 
developing disorders in a person on a genetic basis. 

To analyze DNA sequences through ML algorithms, the DNA sequences should be converted 
into numeric sequences. For this purpose, the Voss representation mapping system is a popular 
choice. However, a lot of other techniques has also been introduced including, the tetrahedron, the 
quaternion, the integers, the real numbers, and the complex numbers [28]. The previously 
discussed numerical representations are ad hoc codifications, not algebraic representations. In 
recent years, genetic code algebraic structures have been introduced that give numerical values to 
DNA bases referring to their algebraic representation. Various related references are previously 
cited in this article. 

Various recent works based on deep learning (DL) techniques analyze changes and mutation of 
the DNA sequences in one of the works the authors [29], presented RNN technique to discover 
mutant sequences from metagenomes. A deep learning technique method for encoding meaningful 
nucleotide sequences and an attention-based long short-term memory (LSTM) network was 
discovered by Liu et al., [30]. A convolutional neural network (CNN)-based technique was 
developed by Tampuu et al., [31] that accepts raw DNA sequences and outputs the probability that 
the input sequence is viral.  

In our recent study, we have introduced multigroup structure for DNA sequences and proposed 
that the whole genome can be represented as a sum of multiset. Then we represent a novel 
numerical mapping technique by representing DNA sequence to multiset-based 𝑛𝑖  and average 
frequency. Further, the extracted frequency for DNA sequences is fed into the Gated Recurrent Unit 
(GRU), Long Short-Term Memory (LSTM), and bidirectional LSTM models to detect changes in DNA 
sequence. In the end, visual representations of the spectrograms using both mapping techniques 
were added, which provided a way to compare the two DNA sequences. 

 
2. Preliminaries 

A set-like structure in which well-defined elements can present multiple times is called a 
multiset e.g.  𝑀 = {𝑎, 𝑎, 𝑏, 𝑐, 𝑐, 𝑐, 𝑑}  is a multiset. It is customary to denote multiset  𝑀  as  
{2/𝑎, 1/𝑏, 3/𝑐, 1/𝑑}. Let  𝑋  be a set of elements, then a multiset  𝑀  over  𝑋  is a function  
𝐶𝑀 : 𝑋 → 𝑁  where  𝑁 = {0,1,2, . . . } . For each  𝑥 ∈ 𝑋, 𝐶𝑀(𝑥)  denotes the number of times  𝑥  
present in  𝑀 . A multiset  𝑀  is an ordinary set if  𝐶𝑀(𝑥) = 0  or  1   ∀   𝑥 ∈ 𝑋  [2].  

The collection of all multisets over  𝑋  such that no element in the multiset occurs more than  𝑛  
times is called multiset space and is denoted by  𝑋𝑛 . Formally, if  𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘}  then  𝑋𝑛 =
{{𝑛1/𝑥1, 𝑛2/𝑥2, . . . , 𝑛𝑘/𝑥𝑘}   |   𝑖 = 1,2, . . . , 𝑘 ;  𝑛𝑖 ∈ {0,1,2, . . . , 𝑛}} . The set  𝑋∞  is the set of all 
multisets over  𝑋  such that there is no limit on the occurrences of an element in a multiset [3]. 

If  𝑀  and  𝑁  are multisets drawn from a set,  𝑋  then  𝑀  and  𝑁  are equal if and only if  
𝐶𝑀(𝑥) = 𝐶𝑁(𝑥)   ∀𝑥 ∈ 𝑋 . If  𝑀  and  𝑁  are multisets drawn from a set  𝑋 , then the sum and 
subtraction of  𝑀  and  𝑁  denoted by  𝑀 + 𝑁  and  𝑀 − 𝑁  is defined as  𝐶𝑀+𝑁(𝑥) = 𝐶𝑀(𝑥) +
𝐶𝑁(𝑥)  and  𝐶𝑀−𝑁(𝑥) = 𝑚𝑎𝑥{𝐶𝑀(𝑥) − 𝐶𝑁(𝑥)})  respectively. If  𝑀  is a multiset drawn from a set,  

https://www.sciencedirect.com/science/article/pii/S0957417423001422#b0065
https://www.sciencedirect.com/science/article/pii/S0957417423001422#b0105
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𝑋 then 2𝑀 and 3𝑀 represent the sum 𝑀 +  𝑀 and 𝑀 +  𝑀 +  𝑀 respectively. In general, 𝑘𝑀 
represent the sum of 𝑘 𝑀’𝑠 [27]. 

Multiset sum operation satisfies commutativity (i.e., +𝑁 = 𝑁 + 𝑀 ) and associativity (i.e., (𝑀 +
𝑁) + 𝑃 = 𝑀 + (𝑁 + 𝑃) ) [28]. The union and intersection of two multisets  𝑀  and  𝑁  drawn from 
a set  𝑋  is denoted by  𝑀 ∪ 𝑁  and  𝑀 ∩ 𝑁  is defined by  𝐶𝑀∪𝑁(𝑥) = 𝑚𝑎𝑥{𝐶𝑀(𝑥), 𝐶𝑁(𝑥)}  and  
𝐶𝑀∩𝑁(𝑥) = 𝑚𝑖𝑛{𝐶𝑀(𝑥), 𝐶𝑁(𝑥)}  respectively. Let  𝑀 ,  𝑁 ∈ 𝑋𝑚 . Then  𝑀  is called a submultiset of  
𝑁 (𝑀 ⊆ 𝑁)  if  𝐶𝑀(𝑥) ≤ 𝐶𝑁(𝑥)  for all  𝑥 ∈ 𝑋 .  𝑀  is a proper submultiset of  𝑁   (𝑀 ⊂ 𝑁)  if  
𝐶𝑀(𝑥) ≤ 𝐶𝑁(𝑥)   ∀   𝑥 ∈ 𝑋  and there exists at least one  𝑥 ∈ 𝑋  such that  𝐶𝑀(𝑥) < 𝐶𝑁(𝑥)  [3].  

Suppose that  𝑀  is a multiset, then the cardinality of  𝑀  denoted by  𝑐𝑎𝑟𝑑(𝑀), is defined as  
𝑐𝑎𝑟𝑑(𝑀) = ∑ 𝐶𝑀(𝑥)𝑥∈𝑋  . If  𝑀  is a submultiset of  𝑁 , then  𝑐𝑎𝑟𝑑(𝑁) ≥ 𝑐𝑎𝑟𝑑(𝑀)  [28].  

Let  𝑋𝑛  and  𝑌𝑚  are multiset spaces over  𝑋  and  𝑌  respectively and  𝑓  :   𝑋 → 𝑌  be a map, 
then an image 𝑓(𝑀) and preimage 𝑓−1(𝑁) of multisets  𝑀   ∈ 𝑋𝑛  and  𝑁 ∈ 𝑌𝑚 are defined as: 
 

𝐶𝑓(𝑀)(𝑣) = {
∨𝑢=𝑓−1(𝑣) 𝐶𝑀(𝑢) if 𝑓−1(𝑣) ≠ 𝜑

0 otherwise
 ∀𝑣 ∈ 𝑌. 

 
And 𝐶𝑓−1(𝑁)(𝑢) = 𝐶𝑁(𝑓(𝑢)) ∀𝑢 ∈ 𝑋. 

Let  𝑋  be a group. A multiset  𝑀  over  𝑋  is called a multigroup over  𝑋  if the count function  
𝐶𝑀 :   𝑋 → 𝑁,  satisfies: 

 𝐶𝑀(𝑥𝑦) ≤ 𝐶𝑀(𝑥) ∧ 𝐶𝑀(𝑦), ∀   𝑥, 𝑦 ∈ 𝑋, 
  𝐶𝑀(𝑥−1) ≤ 𝐶𝑀(𝑥), ∀   𝑥 ∈ 𝑋.   
 It follows that, 

  𝐶𝑀(𝑥−1) = 𝐶𝑀(𝑥), ∀   𝑥 ∈ 𝑋  since  𝐶𝑀(𝑥) = 𝐶𝑀((𝑥−1))
−1

= 𝐶𝑀(𝑥=1), ∀   𝑥 ∈ 𝑋 [3]. 

   
3. Multiset Representation of Genetic Code  

Let  𝑋  be a non-empty set of bit strings  {00,01,10,11}.  𝑋  forms a group under the bitwise 
binary operation 𝑋𝑂𝑅 which gives result  0  if both inputs are the same but give  1  if both inputs 
are different with each other as shown in the see Table 1. 

 
Table 1 
Group of bit strings 
 XOR    00   01   10   11  

 00    00   01   10   11  
 01    01   00   11   10  
 10    10   11   00   01  
 11    11   10   01   00  

 
DNA basis  {𝐺, 𝐴, 𝑇, 𝐶}  can be classified by considering strong  (𝑆 = 𝐺, 𝐶)  or weak  (𝑊 = 𝐴, 𝑇)  

number of hydrogen bonds, purine  (𝑅 = 𝐴, 𝐺)  or pyrimidine  (𝑌 = 𝑇, 𝐶)  chemical type and amino  
(𝑀 = 𝐴, 𝐶)  or keto  (𝐾 = 𝐺, 𝑇)  chemical groups for the four DNA bases. According to the above 
classification criterion, there are 24 ordered sets for DNA basis. There is a freedom of choice in 
labelling 2-bit identifier to each of the four DNA basis. The first and second bits can be  0  or  1  for  
𝑆, 𝑊, 𝑌, 𝑅, 𝑀  and  𝐾. Table 2 shows that there are 24 ways to label 2-bit identifiers to the four DNA 
bases. 
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Table 2   
2-bit identifier labeling to the DNA basis 

First Bit Binary Labelling Second bit Binary Labelling 

S (G, C)/ W (A, T) G, C=1, A, T=0 Y (T, C)/ R (A, G) T, C=0, A, G=1 
T, C=1, A, G=0 

M (A, C)/ K (G, T) A, C=0, G, T=1 
A, C=1, G, T=0 

G, C=0, A, T=1 Y (T, C)/ R (A, G) T, C=0, A, G=1 
T, C=1, A, G=0 

M (A, C)/K (G, T) A, C=0, G, T=1 
A, C=1, G, T=0 

Y (T, C)/R (A, G) T, C=0, A, G=1 S (G, C)/ W (A, T) G, C=1, A, T=0 
G, C=0, A, T=1 

M (A, C)/K (G, T) A, C =0, G, T=1 
A, C=1, G, T=0 

T, C=1, A, G=0 S (G, C)/ W (A, T) G, C=1, A, T=0 
G, C=0, A, T=1 

M (A, C)/ K (G, T) A, C=0, G, T=1 
A, C=1, G, T=0 

M (A, C)/K (G, T) A, C=0, G, T=1 S (G, C)/ W (A, T) G, C=1, A, T=0 
G, C=0, A, T=1 

Y (T, C)/R (A, G) T, C=0, A, G=1 
T, C=1, A, G=0 

A, C=1, G, T=0 S (G, C)/ W (A, T) G, C=1, A, T=0 
G, C=0, A, T=1 

Y (T, C)/R (A, G) T, C=0, A, G=1 
T, C=1, A, G=0 

 
For Example, let 𝐺 ↔ 00, 𝐴 ↔ 01, 𝑇 ↔ 10, 𝐶 ↔ 11, which shows a binary representation of 

DNA bases  {𝐺, 𝐴, 𝑇, 𝐶}  denoted as  𝑆(𝑋). The order of DNA base is considered by using several 
hydrogen bonds (strong/weak) and the first bit is 1 for Y (T, C) and 0 for R (A, G) and the second bit 
is 1 for M (A, C) and 0 for K (G, T).  Table 3 shows that 𝑆(𝑋) form group of DNA basis. 
 

Table 3 
𝑆(𝑋) Group of DNA basis 
  G   A   T   C  

 G   G   A   T   C  
 A   A   G   C   T  
 T   T   C   G   A  
 C   C   A   T   G  

 
By taking the direct product of 3 copies of  𝑆(𝑋)  that is  𝑆(𝑋) × 𝑆(𝑋) × 𝑆(𝑋)  give us a group of 

64-codons which is GC as shown in Table 4. 
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Table 4  
The standard genetic code table 

Second base position 

 

Fi
rs

t 
b

as
e 

p
o

si
ti

o
n

 

 

 

           

  G   A   T   C    Th
ird

 b
ase p

o
sitio

n
 

 

G  GGG   GAG   GTG   GCG   G  
G  GGA   GAA   GTA   GCA   A  
G  GGT   GAT   GTT   GCT   T  
G  GGC   GAC   GTC   GCC   C  
A  AGG   AAG   ATG   ACG   G  
A  AGA   AAA   ATA   ACA   A  
A  AGT   AAT   ATT   ACT   T  
A  AGC   AAC   ATC   ACC   C   
T  TGG   TAG   TTG   TCG   G  
T  TGA   TAA   TTA   TCA   A  
T  TGT   TAT   TTT   TCT   T  
T  TGC   TAC   TTC   TCC   C  
C  CGG   CAG   CTG   CCG   G  
C  CGA   CAA   CTA   CCA   A  
C  CGT   CAT   CTT   CCT   T  
C  CGC   CAC   CTC   CCC   C  

 
Consider a multiset  𝑆 = {48/𝐺, 48/𝐴, 48/𝑇, 48/𝐶}  over  𝑆(𝑋), where 48 is the count of each 

DNA base in the standard genetic code table.  𝑆 forms a multigroup by defining the count function  
𝐶𝑆 :   𝑆(𝑋) → 𝑁  and satisfying conditions of multigroup for all  𝑥 ∈ 𝑆(𝑋). In fact,  𝑆  is standard 
genetic code multigroup whatever order and classification of DNA basis have been considered and 
2-bit identifier labeling for these bases has been taken out of 24 possibilities. In this scenario, it is 
evident that a gene of any length has a representation of 𝑘𝑆+ submultisets of 𝑆, where 𝑘 is some 
positive integer.  Corresponding to the 24 ordered sets for DNA basis, which isomorphic groups. 
This result indicates that it is possible to study GA of whole population within the framework of 
sum of multisets, which provide an error-free and consistent presentation of genome sequencing 
data.  This representation is illustrated in Algorithm 3.1 followed by examples. 

 
3.1 Algorithm 

• Consider DNA sequence string 

• from collections import Counter 
dna1 = ‘ATG…. TAA 
a = counter (dna1) 
print (a) 
output: Counter (𝑑𝑛𝑎1 = {′𝐴′: 𝑛1, ′𝑇′: 𝑛2, ′𝐶′: 𝑛3, ′𝐺′: 𝑛4}) 

• Breaking 𝑛𝑖 = 48 + 48 + ⋯ + 𝑑; such that 𝑑 < 48 is some positive integer, where 𝑖 =
1,2,3,4. 

• DNA Sequence= kS+ Submultisets of S, where k is some positive integer. 
 

3.1.1 Example 
mecA gene (Methicillin resistance gene) 

Name: Staphylococcus aureus subsp. Aureus NCTC 8325 chromosome, complete genome 
GenBank Accession: NC-007795.1 
Sequence length (bp): 720 

ATGAGAATAGAACGAGTAGATGATACAACTGTAAAATTGTTTATAACATATAGCGATATCGAGGCCCGTGGA
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TTTAGTCGTGAAGATTTATGGACAAATCGCAAACGTGGCGAAGAATTCTTTTGGTCAATGATGGATGAAATT
AACGAAGAAGAAGATTTTGTTGTAGAAGGTCCATTATGGATTCAAGTACATGCCTTTGAAAAAGGTGTCGAA
GTCACAATTTCTAAATCTAAAAATGAAGATATGATGAATATGTCTGATGATGATGCAACTGATCAATTTGATG
AACAAGTTCAAGAATTGTTAGCTCAAACATTAGAAGGTGAAGATCAATTAGAAGAATTATTCGAGCAACGAA
CAAAAGAAAAAGAAGCTCAAGGTTCTAAACGTCAAAAGTCTTCAGCACGTAAAAATACAAGAACAATCATTG
TGAAATTTAACGATTTAGAAGATGTTATTAATTATGCATATCATAGCAATCCAATAACTACAGAGTTTGAAGA
TTTGTTATATATGGTTGATGGTACTTATTATTATGCTGTATATTTTGATAGTCATGTTGATCAAGAAGTCATTA
ATGATAGTTACAGTCAATTGCTTGAATTTGCTTATCCAACAGACAGAACAGAAGTTTATTTAAATGACTATGC
TAAAATAATTATGAGTCATAACGTAACAGCTCAAGTTCGACGTTATTTTCCAGAGACAACTGAATAA 

A multiset over the above gene is  
𝐸 = {275/𝐴, 217/𝑇, 138/𝐺, 90/𝐶}. 
One could see that  𝐸 = 𝑆 + 𝐽1 + 3𝐼1 + 𝐽2 + 𝐼2 + 𝐼3  is the sum of submultisets of  𝑆 where, 

𝐼1 = {48/𝐴, 48/𝑇, 0/𝐺, 0/𝐶}, 𝐼2 = {48/𝐴, 25/𝑇, 0/𝐺, 0/𝐶}, 𝐼3 = {35/𝐴, 0/𝑇, 0/𝐺, 0/𝐶}, 𝐽1 =
{48/𝐺, 0/𝐶, 0/𝐴, 0/𝑇}, and 𝐽2 = {42/𝐺, 42/𝐶, 0/𝐴, 0/𝑇} are submultisets of S.  

Note that if 𝑋 = {𝐴, 𝑇, 𝐺, 𝐶}  and  𝑌 = {𝐺, 𝐶, 𝐴, 𝑇}  are groups of DNA bases, where  𝐴 ↔
00, 𝑇 ↔ 01, 𝐺 ↔ 10, 𝐶 ↔ 11  and  𝐺 ↔ 00, 𝐶 ↔ 01, 𝐴 ↔ 10, 𝑇 ↔ 11  are their binary 
representation respectively. And 𝑆  is standard genetic code multigroup over X and Y. Then 𝐼1 =
{48/𝐴, 48/𝑇, 0/𝐺, 0/𝐶},  𝐼2 = {48/𝐴, 25/𝑇, 0/𝐺, 0/𝐶}, 𝐼3 = {35/𝐴, 0/𝑇, 0/𝐺, 0/𝐶}  are 
submultigroups of  S  corresponding to  𝑋 and  𝐽1 = {48/𝐺, 0/𝐶, 0/𝐴, 0/𝑇},  𝐽2 = {42/𝐺, 42/𝐶, 0/
𝐴, 0/𝑇}  are submultigroups of  S  corresponding to  𝑌. 

 
3.1.2 Example 

INS gene  
Name: INS gene (Homo Sapiens INS gene, partial) 
GenBank Accession: AJ009655.1 
Sequence length (bp): 1393 

AGCAGGTCTGTTCCAAGGGCCTTTGCGTCAGGTGGGCTCAGGGTTCCAGGGTGGCTGGACCCCAGGCCCCA
GCTGTGCAGCAGGGAGGACGTGGCTGGGCTCGTGAAGCATGTGGGGGTGAGCCCAGGGGCCCCAAGGCA
GGGCACCTGGCCTTCAGCCTGCCTCAGCCCTGCCTGTCTCCCAGATCACTGTCCTTCTGCCATGGCCCTGTGG
ATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGGACCTGACCCAGCCGCAGCCTTTGTGAACCAA
CACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGCTTCTTCTACACACCCA
AGACCCGCCGGGAGGCAGAGGACCTGCAGGGTGAGCCAACCGCCCATTGCTGCCCCTGGCCGCCCCCAGCC
ACCCCCTGCTCCTGGCGCTCCCACCCAGCATGGGCAGAAGGGGGCAGGAGGCTGCCACCCAGCAGGGGGTC
AGGTGCACTTTTTTAAAAAGAAGTTCTCTTGGTCACGTCCTAAAAGTGACCAGCTCCCTGTGGCCCAGTCAGA
ATCTCAGCCTGAGGACGGTGTTGGCTTCGGCAGCCCCGAGATACATCGAGGGTGGGCACGCTCCTCCCTCCA
CTCGCCCCTCAAACAAATGCCCCGCAGCCCATTTCTCCACCCTCATTTGATGACCGCAGATTCAAGTGTTTTGT
TAAGTAAAGTCCTGGGTGACCTGGGGTCACAGGGTGCCCCACGCTGCCTGCCTCTGGGCGAACACCCCATCA
CGCCCGGAGGAGGGCGTGGCTGCCTGCCTGAGTGGGCCAGACCCCTGTCGCCAGCCTCACGGCAGCTCCAT
AGTCAGGAGATGGGGAAGATGCTGGGGACAGGCCCTGGGGAGAAGTACTGGGATCACCTGTTCAGGCTCC
CACTGTGACGCTGCCCCGGGGCGGGGGAAGGAGGTGGGACATGTGGGCGTTGGGGCCTGTAGGTCCACAC
CCAGTGTGGGTGACCCTCCCTCTAACCTGGGTCCAGCCCGGCTGGAGATGGGTGGGAGTGCGACCTAGGCT
GGCGGGCAGGCGGGCACTGTGTCTCCCTGACTGTGTCCTCCTGTGTCCCTCTGCCTCGCCGCTGTTCCGGAAC
CTGCTCTGCGCGGCACGTCCTGGCAGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTG
CAGCCCTTGGCCCTGGAGGGGTCCCTGCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGCATCTGCTCC
CTCTACCAGCTGGAGAACTACTGCAACTAGACGCAGCCTGCAGGCAGCCCCACACCCGCCGCCTCTGCACCG
AGAGAGATGGAATAAAGCCCTTGAACCAGC 
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A multiset over above gene is  
𝐹 = {456/𝐶, 447/𝐺, 255/𝑇, 235/𝐴}. 

One can see that  𝐹 = 4𝑆 + 5𝐾1 + 𝐾2 + 𝐿1 + 𝐿2 is the sum of submultisets of  𝑆. 
Note that if  𝑋 = {𝐶, 𝐺, 𝑇, 𝐴}  and  𝑌 = {𝑇, 𝐴, 𝐶, 𝐺}  are groups of DNA bases, where  𝐶 ↔

00, 𝐺 ↔ 01, 𝐴 ↔ 10, 𝑇 ↔ 11  and  𝑇 ↔ 00, 𝐴 ↔ 01, 𝐺 ↔ 10, 𝐶 ↔ 11  are their binary 
representation respectively. And 𝑆  is standard genetic code multigroup over X and Y. Then  

𝐾1 = {48/𝐶, 48/𝐺, 0/𝑇, 0/𝐴}, 𝐾2 = {24/𝐶, 15/𝐺, 0/𝑇, 0/𝐴} are submultigroups of S  
corresponding to  X  and  𝐿1 = {48/𝑇, 43/𝐴, 0/𝐺, 0/𝐶}, 𝐿2 = {15/𝑇, 0/𝐴, 0/𝐺, 0/𝐶}  are 
submultigroups of  S  corresponding to  Y. 
 
 
4. Numerical Mapping technique 

 A new mapping technique which is a multiset-based numerical mapping technique is applied in 
this work. A multiset over mecA gene of sequence length 720 bp is  𝐸 = {275/𝐴, 217/𝑇, 138/
𝐺, 90/𝐶}  represent the count of each base in DNA sequence.  Algorithm 3.1 is used to take an 
average of the frequencies of each nucleotide in the DNA sequence. Since it is already proved that 
every DNA sequence can be written as the sum of multisets of S, an average of multiples of 48 on 
each nucleotide gives the average frequency for the DNA bases. The Average frequency values of 
DNA bases for the above DNA sequence are as follows 𝐴 =  45.8, 𝑇 =  43.4, 𝐺 =  46.0, 𝐶 =  45.0.  
Dataset used for analysis is given in Table 5. 

 
Table 5 
Dataset uses for the analysis 
Index Access number 

 1  KT279557.1 
 2  KT279556.1 

 
5. Training of Models 

Applications of natural language processing (NLP) include chatbots, machine translation, 
sentiment analysis, speech recognition, and more. To perform these tasks, NLP systems often rely 
on artificial neural networks (ANNs), which are models that mimic the structure and function of 
biological neurons. Sequential data is processed by a specific type of ANN called Recurrent neural 
networks (RNN). These are comprised of feed-forward neural networks, and their behavior is 
identical to that of human brains. The RNN uses each node as a memory cell to aid this network so 
that it can be able to remember the sentence's context [32-34]. 

Since machine learning algorithms only require numbers [35], in our recent experiment, we 
used multiset-based average frequency and count nucleotide mapping for numerical conversion of 
DNA sequence. A flow chart of the proposed is provided in the following Figure 2. 
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Fig. 2. Flow chart of the proposed method 
 

We trained the LSTM, GRU and bidirectional LSTM model on a subsequence of our reference 
gene. For this experiment, a subsection of the gene is used. Three Machine Learning models LSTM, 
GRU, and Bidirectional LSTM were used for learning. TensorFlow library is used in Jupyter 
notebook. First, convert nucleotide sequence to a numerical index, and a sequence length of 50 is 
used to construct the array for learning. Two numerical mapping techniques are used to digitize the 
sequential data, frequency of each DNA base, and multiset-bases average frequency of each DNA 
base in a DNA sequence. The models are tested for both mapping techniques. The training and 
validation accuracy of GRU model on 50 epochs achieved an accuracy of 98.50 % using multiset-
based 𝑛𝑖  average frequency of DNA bases. Figure 3 provides the accuracy comparison for GRU 
model between the count nucleotides mapping and multiset-based 𝑛𝑖  average mapping. 
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Fig. 3. Accuracy comparison for GRU model 
 

Insufficient information is provided by count nucleotide mapping to enable the models to 
discriminate between changed and unchanged sequences. LSTM and BLSTM seem less appropriate 
for this task than GRU. However, numeric values through count nucleotide frequency of DNA bases 
do not get the required level of accuracy which is given in Table 6. 
 

Table 6. Accuracy, Sensitivity and Precision results 

Numerical mapping techniques Models Accuracy (%) Sensitivity 

(%) 

Precision (%) 

Count nucleotide mapping LSTM 47.95 0.00 0.00 

BLSTM 41 0.00 0.00 

GRU 47.95 0.00 0.00 

multiset-based 𝑛𝑖-average 

frequency of nucleotide 

LSTM 49.42 0.00 0.00 

BLSTM 47.95 0.00 0.00 

GRU 98.50 97.31 99.80 

 
6. Spectrogram Analysis 

The spectrograms visualisations offer a means of contrasting the two DNA sequences and the 
two distinct mapping techniques. These graphics aid in our comprehension of why the multiset-
bases 𝑛𝑖  -average frequency mapping approach would have yielded better results in the machine 
learning models, especially for the GRU model. The four nucleotides (A, T, C, and G) are 
represented by the y-axis, and the position along the sequence is indicated by the x-axis. With 
brighter colours (yellow) denoting higher counts and darker colours (blacker) denoting lower 
counts, the colour intensity represents the number of each nucleotide in a specific window.  

Multiset-bases 𝑛𝑖  average frequency offers a normalized view of the data, which may facilitate 
the models' ability to identify subtle variations amongst sequences whereas the count nucleotides 
mapping provides a direct representation of the data. Sequence 1 Sequences 1 and 2 exhibit similar 
patterns, indicating that these sequences are highly identical. The patterns we observe may be 
indicative of many DNA functional domains, including structural motifs, regulatory elements, and 
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coding sections. The sequences' strong similarity suggested the possibility that they are closely 
related or identical alleles of the same gene (see Figure 4). 

 

 

Fig. 4. Visualizations of two sequences using two different mapping methods 
 

7. Conclusions 
Multiset theory plays an important role in practical problems. This manuscript depicts that 

stranded genetic code is a multigroup and genome of any species has a representation of the sum 
of multisets which presents genome sequencing data in a useful and meaningful manner. We 
compared two numerical mapping techniques to convert DNA sequence data to numerical values. 
Additionally, we tested three ML models to detect changes in the DNA sequences. The multiset-
based 𝑛𝑖  average frequency mapping provides more informative features than count nucleotide 
mapping, allowing the GRU model to learn effectively. Spectrogram visualization of proposed 
Mapping demonstrates how accumulating mutations change the global genetic profile. The high 
similarity between the sequences suggests they might be alleles of the same gene or closely related 
genes. In the future, this novel technique could be used to detect mutations for early prediction of 
complex diseases.  
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