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In a university classroom, students exhibit varying levels of engagement, posing 

challenges for professors in delivering instruction effectively. While some stu-

dents are highly engaged, others may struggle to keep pace, creating a demand-

ing environment for the professor to manage while ensuring comprehensive 

learning. Consequently, the professor faces two primary options: either disre-

garding students with differing engagement levels or adopting an alternative 

teaching approach. An effective professor adapts their teaching methodology ac-

cording to student engagement; however, determining the most suitable ap-

proach for the majority of students within a class is a complex task. The selection 

of an appropriate teaching mode is further complicated by various uncertain 

factors. This study seeks to develop a structured approach for selecting class-

room teaching modes based on diverse levels of student engagement while con-

sidering multiple influencing factors. To achieve this, a novel model is intro-

duced, namely the complex interval-valued Fermatean fuzzy set (CIVFFS), which 

integrates the characteristics of the complex Fermatean fuzzy set (CFFS) and the 

interval-valued Fermatean fuzzy set (IVFFS). The CIVFFS plays a crucial role in 

addressing the uncertain and incomplete information associated with various 

factors affecting classroom teaching methods.  Four methods are proposed 

based on algebraic t-norms and t-conorms, namely the complex interval-valued 

Fermatean fuzzy weighted averaging (CIVFFWA) operator, the complex interval-

valued Fermatean fuzzy ordered weighted averaging (CIVFFOWA) operator, the 

complex interval-valued Fermatean fuzzy weighted geometric (CIVFFWG) oper-

ator, and the complex interval-valued Fermatean fuzzy ordered weighted geo-

metric (CIVFFOWG) operator, along with their respective properties. The pro-

posed approach enables an evaluation of its effectiveness across different sce-

narios. An illustrative example is provided to demonstrate the practicality and 

reliability of the model and methods, highlighting their applicability in real-

world contexts. 

1. Introduction  
Educational institutions face significant challenges in keeping pace with the rapid advancement 

of technology, which directly influences students' learning processes. The selection of appropriate 
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teaching methodologies is crucial for enhancing student learning outcomes. Interactive approaches, 
such as group discussions, collaborative study, and problem-solving, often yield superior results, as 
highly engaged students actively participate in seminars, presentations, and other interactive activi-
ties. These methods contribute to a more effective and engaging learning experience.  However, stu-
dents with lower engagement levels often require traditional teaching methodologies supplemented 
with multimedia tools or other interactive techniques to capture their attention. Selecting an appro-
priate teaching approach is a complex task for educators due to the diverse engagement levels among 
students. The choice of teaching mode is influenced by multiple factors, each characterised by uncer-
tainty and ambiguity, making their modelling particularly challenging.  

Various methods and frameworks have been developed to address uncertainty. The concept of 
fuzzy sets (FS) was first introduced to represent an object's degree of belonging to a set using a mem-
bership grade (MG) [1]. FS has played a significant role in reducing uncertainty in information pro-
cessing. Unlike classical set theory, which operates on binary true-false logic, FS provides a more nu-
anced representation of real-world scenarios by assigning values between 0 and 1 to indicate varying 
levels of engagement. This flexibility enhances its applicability in dealing with ambiguous situations.  
However, FS lacks the capability to account for hesitation in complex environments. For instance, if the MG of 
an element is 0.4, the corresponding non-membership grade (NMG) is conventionally determined as 1 - 0.4 = 
0.6. This approach does not acknowledge the independent existence of NMG, thereby restricting FS’s ability 
to comprehensively model uncertainty in certain contexts. To overcome these limitations, [2] introduced the 

intuitionistic fuzzy set (IFS), with 0 ≺ 𝑚 + 𝑛 ≤ 1, where m  is called MG and n  is NMG.  
Later, researchers such as [3], [4], [5;6], and [7] introduced various methods, including algebraic, Einstein, 

and Hamacher techniques. These approaches proved valuable in enhancing decision-making processes, 
demonstrating their effectiveness in handling complex decisions. Building on the concept of IFS, [8] introduced 
the interval-valued intuitionistic fuzzy set (IVIFS), further expanding its applicability. This extension allows for 
more flexible handling of uncertainty in various situations. In IVIFS, element is presented as: ([𝑚, 𝑛], [𝑑, 𝑔]) 
under restriction 0 ≤ 𝑛 + 𝑔 ≤ 1. The researchers in  [9] presented a new concept called Pythagorean fuzzy set 
(PyFS), under condition: 0 ≺ 𝑚2 + 𝑛2 ≤ 1. The authors in [10;11] proposed various techniques utilising PyFNs 
and applied them to the decision-making process. Building on this, [12] introduced the interval-valued Pythag-
orean fuzzy set (IVPyFS), providing a more flexible framework for representing and managing uncertainty. In 
IVPyFS, each element is expressed as: ([𝑚, 𝑛], [𝑑, 𝑔]) with 0 ≤ 𝑛2 + 𝑔2 ≤ 1. The authors in [13;14] introduced 
new methods based on IVPyFNs, successfully applying them to decision-making processes. Their findings 
demonstrated how IVPyFNs enhance both the accuracy and flexibility of decision-making. Advancing this field, 
[15] proposed the Fermatean fuzzy set (FFS), an extension of PyFS that relaxes its inherent limitations. Building 
on FFNs, [16] introduced Dombi techniques, effectively applying them to various decision-making scenarios. 
Further extending this framework, [17] developed the interval-valued Fermatean fuzzy set (IVFFS), which en-
hances the adaptability of IVPyFS by modifying the constraint from 0 ≤ 𝑛2 + 𝑔2 ≤ 1 to 0 ≤ 𝑛3 + 𝑔3 ≤ 1. This 
advancement significantly improves the representation of uncertainty and fuzziness, leading to more precise 
and flexible solutions for complex decision-making problems. 

Existing models, such as FS, IFS, PyFS, FFS, IVIFS, IVPyFS, and IVFFS, primarily focus on decision-
making problems and effectively handle uncertainty and vagueness. However, they struggle to cap-
ture partial ignorance and adapt to changes over time, particularly in complex datasets such as bio-
metrics, medical research, and multimedia. This highlights the need for more advanced models that 
can manage incomplete, dynamic, and imprecise information more effectively.  To address these limi-
tations, the complex fuzzy set (CFS) was introduced to improve handling of partial ignorance and track varia-
tions in dynamic datasets, particularly in areas such as audio processing, healthcare, and image analysis [18]. 
Further advancements led to the introduction of the complex intuitionistic fuzzy set (CIFS), which extended 

these capabilities [19]. In CIFS, each element is defined as: (𝑚𝑒𝑖𝑝, 𝑛𝑒𝑖𝑞) with 0 ≤ 𝑚 + 𝑛 ≤ 1 and 0 ≤
𝑝

2𝜋
+

𝑞

2𝜋
≤ 1. Later, several researchers developed new methods using CIFNs, enhancing the handling of uncertainty 
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and ambiguity in decision-making across various fields [20-22]. These advancements represent significant pro-
gress in managing complex information in diverse applications.  

Further developments led to the introduction of the CIVIFS, an extension of the traditional IVIFS, 
which provides a more effective representation of uncertainty by incorporating both real and imagi-

nary components [23]. In CIVIFS, each element is presented as: ([𝑚, 𝑛]𝑒𝑖[𝑝,𝑞], [𝑑, 𝑔]𝑒𝑖[𝑟,𝑠]) with 0 ≤

𝑛 + 𝑔 ≤ 1 and 0 ≤
𝑞

2𝜋
+

𝑠

2𝜋
≤ 1. Several advanced techniques using CIVIFNs were developed to en-

hance decision-making, providing greater flexibility and precision in handling complex and uncertain 
information [24]. The complex Pythagorean fuzzy set (CPyFS) was later introduced as an extension of 
CIFS, improving its flexibility, adaptability, and ability to manage complex uncertainties [25]. In CPyFS, 

the condition is defined as: 0 ≤ 𝑚2 + 𝑛2 ≤ 1  and 0 ≤ (
𝑝

2𝜋
)
2

+ (
𝑞

2𝜋
)
2

≤ 1 . A series of new ap-

proaches focusing on CPyFNs have been developed and applied in decision-making processes, 
demonstrating their effectiveness and applicability across various scenarios [26-29]. Further advance-
ments led to the introduction of complex interval-valued Pythagorean fuzzy sets (CIVPyFS), which 

were proposed with certain limitations [30] such as:  0 ≤ 𝑛2 + 𝑔2 ≤ 1 and 0 ≤ (
𝑞

2𝜋
)
2

+ (
𝑠

2𝜋
)
2

≤ 1.  

The CFFS was innovatively introduced, providing an advanced approach to handling uncertainty 

and complexity in decision-making [31]. In CFFS, each element is presented as: (𝑚𝑒𝑖𝑝, 𝑛𝑒𝑖𝑞) with 0 ≤

𝑚3 + 𝑛3 ≤ 1 and 0 ≤ (
𝑝

2𝜋
)
3

+ (
𝑞

2𝜋
)
3

≤ 1. CFFS surpasses FFS, CIFS, and CPyFS in adaptability, relia-

bility, and flexibility, providing enhanced performance and greater versatility. Its advanced features 
make it a more efficient and practical option for various applications.  Building on the strengths of 
previous models and their aggregation operators, this study introduces CIVFFS as a more powerful 
tool. A set of new operators based on CIVFF-information is proposed, including CIVFFWA, CIVFFOWA, 
CIVFFWG, and CIVFFOWG. These operators enhance the capabilities of existing models, improving 
overall performance. To validate the effectiveness of these methods, an example is provided to 
demonstrate their application in selecting university-level teaching methods, illustrating their practi-
cal significance.  

The structure of this research is organised to ensure a clear and systematic exploration of the 
study. Section 2 establishes the foundational definitions necessary for understanding the key con-
cepts. Section 3 introduces CIVFFS along with their primary operational laws. Section 4 presents newly 
developed operators—CIVFFWA, CIVFFOWA, CIVFFWG, and CIVFFOWG—detailing their functionali-
ties and applications. Section 5 focuses on the practical applications of these operators, demonstrat-
ing their real-world significance. Section 6 provides an illustrative example to highlight the utility of 
these techniques in a concrete scenario. Section 7 offers a comparative analysis of the proposed 
methods, while Section 8 concludes with a summary of key findings and contributions. 
 
2. Preliminaries 

This section introduces fundamental definitions that will be utilised throughout the research. 
Definition 1 [31]:The CFFS ℂ  on a universal set 𝑇  is the set of ordered pairs having the 

mathematical form as: ℂ = {⟨𝑡,𝑚ℂ(𝑡)𝑒
𝑖𝑝ℂ(𝑡), 𝑛ℂ(𝑡)𝑒

𝑖𝑞ℂ(𝑡)⟩|𝑡 ∈ 𝑇} , where 𝑚ℂ(𝑡): 𝑇 → [0,1]  and 

𝑛ℂ(𝑡): 𝑇 → [0,1]  present the grade of complex valued membership and complex valued non-

membership of the element 𝑡  in the set ℂ   with 0 ≤ (𝑚)3 + (𝑛)3 ≤ 1  and  0 ≤ (
𝑝

2𝜋
)
3

+ (
𝑞

2𝜋
)
3

≤

1 with 𝑝ℂ(𝑡) ∈ [0,2𝜋] , 𝑞ℂ(𝑡) ∈ [0,2𝜋]  respectively, Furthermore 𝑖 = √−1  be a unit circle and 

let𝜋ℂ(𝑡) = √1 − ((𝑚ℂ(𝑡))
3
+ (𝑛ℂ(𝑡))

3
)

3
𝑒
√1−((𝑝ℂ(𝑡))

3
+(𝑞ℂ(𝑡))

3
)

3

 , then the term 𝜋ℂ(𝑡) is called the 
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grade of indeterminacy or hesitancy of the element 𝑡 to 𝑇, ∀𝑡 ∈ 𝑇. 

Definition 2 [31]: Let Њ𝑗 = (𝑚𝑗𝑒
𝑖𝑝𝑗 , 𝑛𝑗𝑒

𝑖𝑞𝑗)(𝑗 = 1,2) be a family of two CFFNs and a real number 

𝜒 ≻ 0, then the following theoretical operational laws hold: 

i) Њ1⊕Њ2 = (√𝑚1
3 +𝑚2

3 −𝑚1
3𝑚2

33
𝑒
𝑖( √(

𝑝1
2𝜋
)
3
+(
𝑝2
2𝜋
)
3
−(
𝑝1
2𝜋
)
3
(
𝑝2
2𝜋
)
33
)
, (𝑛1𝑛2)𝑒

𝑖(
𝑞1
2𝜋
)(
𝑞2
2𝜋
))  

ii) Њ1⊗Њ2 = ((𝑚1𝑚2)𝑒
𝑖(
𝑝1
2𝜋
)(
𝑝2
2𝜋
) , √𝑛1

3 + 𝑛2
3 − 𝑛1

3𝑛2
33
𝑒
𝑖( √(

𝑞1
2𝜋
)
3
+(
𝑞2
2𝜋
)
3
−(
𝑞1
2𝜋
)
3
(
𝑞2
2𝜋
)
33
)
)  

iii) 𝜒(Њ) =

(

 
 
√1 − (1 −𝑚3)𝜒
3

𝑒
𝑖( √1−(1−(

𝑝

2𝜋
)
3
)
𝜒3
)

, 𝑛𝜒𝑒𝑖(
𝑞

2𝜋
)
𝜒

)

 
 

  

iv) (Њ)𝜒 =

(

 
 
(𝑚)𝜒𝑒𝑖(

𝑝

2𝜋
)
𝜒

, √1 − (1 − 𝑛3)𝜒
3

𝑒
𝑖( √1−(1−(

𝑞

2𝜋
)
3
)
𝜒3
)

)

 
 

  

Definition 3: If Њ = (𝑚𝑒𝑖𝑝, 𝑛𝑒𝑖𝑞) be a CFFN, then the score value of the CFFN is defined as: 

𝑠𝑐𝑜𝑟𝑒(Њ) = (𝑚3 − 𝑛3) +
1

8𝜋3
(𝑝3 − 𝑞3) with limitation: 𝑠𝑐𝑜𝑟𝑒(Њ) ∈ [−2, 2]  

 
3. Complex Interval-Valued Fermatean Fuzzy Set 

This section explores the concept of CIVFFSs, including their operational laws, scoring functions, 
and accuracy measures. Fundamental results are developed to demonstrate the flexibility and adapt-
ability of this approach. CIVFFSs offer an improved method for managing uncertainty and imprecision 
in decision-making, enhancing problem-solving in complex scenarios. 

Definition 4: The CIVFFS F on a universal discourse X can be mathematically defines as: 
𝐹 = {𝜏, ([𝑉𝐹

−(𝜏), 𝑉𝐹
+(𝜏)], [𝑈𝐹

−(𝜏), 𝑈𝐹
+(𝜏)])|𝜏 ∈ 𝑋}, where 𝑉𝐹

−(𝜏), 𝑉𝐹
+(𝜏), 𝑈𝐹

−(𝜏), 𝑈𝐹
+(𝜏) represent 

the degrees associated with the lower and upper bounds of membership and non-membership 

defined as: 𝑉𝐹
−(𝜏) = 𝑧1

−𝑣𝑒 = 𝑚𝐹(𝜏)𝑒
𝑖𝑝𝐹(𝜏) , 𝑉𝐹

+(𝜏) = 𝑥1
+𝑣𝑒 = 𝑛𝐹(𝜏)𝑒

𝑖𝑞𝐹(𝜏) with |𝑥1
−𝑣𝑒| ≺ |𝑥1

+𝑣𝑒| , 

while𝑈𝐹
−(𝜏) = 𝑥2

−𝑣𝑒 = 𝑑𝐹(𝜏)𝑒
𝑖𝑟𝐹(𝜏) , 𝑈𝐹

+(𝜏) = 𝑥2
+𝑣𝑒 = 𝑔𝐹(𝜏)𝑒

𝑖𝑠𝐹(𝜏)  with |𝑥2
−𝑣𝑒| ≺ |𝑥2

+𝑣𝑒|. All of the 
amplitude terms 𝑚𝐹(𝜏), 𝑛𝐹(𝜏), 𝑑𝐹(𝜏), 𝑔𝐹(𝜏) are belong to the closed interval [0,1] and satisfying the 

conditions: 𝑚𝐹(𝜏) ≺ 𝑛𝐹(𝜏)  and 𝑑𝐹(𝜏) ≺ 𝑔𝐹(𝜏)  with 0 ≺ (𝑛𝐹(𝜏))
3
+ (𝑔𝐹(𝜏))

3
≤ 1 , ∀  𝜏 ∈ 𝑋 . 

Similarly the phase terms 𝑝𝐹(𝜏), 𝑞𝐹(𝜏), 𝑟𝐹(𝜏), 𝑠𝐹(𝜏)are real valued numbers which lie in the interval 

[0,2𝜋]  and satisfying the conditions: 0 ≺ (
ƛ𝐹(𝜏)

2𝜋
)
3

+ (
ℓ𝐹(𝜏)

2𝜋
)
3

≤ 1  with 𝑝𝐹(𝜏) ≺ 𝑞𝐹(𝜏)and 𝑟𝐹(𝜏) ≺

𝑠𝐹(𝜏). Thus, CIVFFS F can be represented mathematically on X as:  

𝐹 = {𝜏, ([𝑚𝐹(𝜏), 𝑛𝐹(𝜏)]𝑒
𝑖[𝑝𝐹(𝜏),𝑞𝐹(𝜏)], [𝑑𝐹(𝜏), 𝑔𝐹(𝜏)]𝑒

𝑖[𝑟𝐹(𝜏),𝑠𝐹(𝜏)])|𝜏 ∈ 𝑋}    (1) 

Moreover, if 𝜋𝐹(𝜏) = (𝜋𝐹
−(𝜏), 𝜋𝐹

+(𝜏)) 𝑒𝑖(𝜅𝐹
−(𝜏),𝜅𝐹

+(𝜏))  , then it is called  the CIVFF-index of 𝜏 to F, 

where 𝜋𝐹
−(𝜏) = √1 − ((𝑛𝐹(𝜏))

3
+ (𝑔𝐹(𝜏))

3
)

3
, 𝜋𝐹

+(𝜏) = √1 − ((𝑚𝐹(𝜏))
3
+ (𝑑𝐹(𝜏))

3
)

3
, 𝜅𝐹

−(𝜏) =

√1 − ((𝑞𝐹(𝜏))
3
+ (𝑠𝐹(𝜏))

3
)

3
 and 𝜅𝐹

+(𝜏) = √1 − ((𝑝𝐹(𝜏))
3
+ (𝑟𝐹(𝜏))

3
)

3
. Furthermore, the 
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complex interval-valued Fermatean fuzzy number can be expressed numerically as: Њ =

([𝑚, 𝑛]𝑒𝑖(𝑝,𝑞), [𝑑, 𝑔]𝑒𝑖(𝑟,𝑠)). 

In fuzzy set theory, particularly in decision-making analysis, t-norms (T) and s-norms (S) are func-
tions representing conjunction (AND) and disjunction (OR), respectively. T-norms, such as the mini-
mum and algebraic product, model the intersection of fuzzy sets, while s-norms define their union. 

Definition 5: Let x and y are any two natural numbers, and then their algebraic t-norms (T) and s-
norms (S) is defined mathematically as: 𝑇(𝑥, 𝑦) = 𝑥𝑦 and 𝑆(𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 respectively. Based 
on these algebraic norms, four operations are defined, which will be utilised in the development of 
aggregation operators in the subsequent section. These operations serve as the foundation for con-
structing effective aggregation techniques. 

Definition 6: Let Њ𝑗 = ([𝑚𝑗, 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗 , 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(𝑗 = 1,2) be a family of two CFFNs and a 

real number 𝜒 ≻ 0, then the following operational laws hold:  

i) 

3 3 3 3
1 2 1 23 ,

2 2 2 2

3 3 3 3
1 2 1 233 3 3 33 , 2 2 2 21 2 1 21 2 ,

3 3 3 33
1 2 1 2

1 2 1,
2 2 2

,1 2 1 2

p p p p

m m m mЊ

q

Њ

n n n n

d g

i

q q q

e

r r s
i

d g e

   

   

 

 
        

+ −        
        

 
        

  + −        + − =           
 
 + −
 

  
  
    

2

2

s

 

 
 
 
 
 
 
 
 
 
 
 

    
    

    
 

 

ii) 

1 2 1 2,
2 2 2 2

, ,1 2 1 2

3 3 3 3
1 2 1 23 ,

2 2 2 21 2

3 3 3
1 2 1 2

3 3 3 33 , 2 2 2 21 2 1 2

3 3 3 33
1 2 1 2

p p q q
i

m n n e

r r r r

i

s s

Њ

s s

d d d d
e

g g g g

m

Њ

   

   

   

      
      
        

       
+ −       

 =        

      
  + −     + −       
 
 + −
 

3
3

 
 
 
 
  
  
  
  
  
  
   
   
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Definition 7: Let Њ = ([𝑚, 𝑛]𝑒𝑖(𝑝,𝑞), [𝑑, 𝑔]𝑒𝑖(𝑟,𝑠))  be a CIVFFN, then score valve defined as: 

𝑠𝑐𝑜𝑟𝑒(Њ) =
1

2
((𝑚3 + 𝑛3) − (𝑑3 + 𝑔3) +

1

2𝜋
(𝑝3 + 𝑞3) − (𝑟3 + 𝑠3)) with 𝑠𝑐𝑜𝑒(Њ) ∈ [−1,1]. 

Definition 8: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗 , 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(𝑗 = 1,2)  be a collection of CIVFFNs, 

then the conditions are satisfied. 

i) 
   

   

   
   

max , , max ,1 2 1 2max , , max , ,1 2 1 2
1 2

min , , min ,1 2 1 2min , , min ,1 2 1 2

Њ

i p p q q
m m n n e
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d

Њ

d g g e

  
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ii) 
   

   

   
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p p q q
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Њ

g

  
   

  =
  

   
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iii) ( )   ( )   ( ), ,
, , ,

c
Њ

i r s i p q
d g e m n e

 
=  
 

 

Theorem 1: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗 , 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(𝑗 = 1,2) be a collection of CIVFFNs, and 

𝜒 ≻ 0, then the conditions are satisfied. 
i) Њ1 ∪Њ2 = Њ2 ∪Њ1 
ii) Њ1 ∩Њ2 = Њ2 ∩Њ1 
iii) 𝜒(Њ1 ∪Њ2) = 𝜒(Њ1) ∪ 𝜒(Њ2) 
iv) 𝜒(Њ1 ∩Њ2) = 𝜒(Њ1) ∩ 𝜒(Њ2) 
v) (Њ1 ∪Њ2)

𝜒 = (Њ1)
𝜒 ∪ (Њ2)

𝜒 
vi) (Њ1 ∩Њ2)

𝜒 = (Њ1)
𝜒 ∩ (Њ2)

𝜒 
Proof: We establish parts (i, ii), with the remaining parts proven similarly. 
i) Since Њ1 and Њ2 are two CIVFFNs, then by using Definition 8, we have:  

   
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   
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ii) Again, by using Definition 8, we have:  

   
   

   
   
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e
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   

  =
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   
  
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 
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 
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                = 2 1

s
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s

Њ

 
 
 
  

  
 

 

Thus, the proof is concluded. 
 

4. New Methods Based on Algebraic Operations 
This section introduces complex approaches under interval-valued fuzzy information, including 

the CIVFFWA, CIVFFOWA, CIVFFWG, and CIVFFOWG operators. These methods are designed to pro-
cess interval-valued fuzzy data, each providing distinct techniques for information aggregation. Addi-
tionally, their key structural properties, such as idempotency, boundedness, and monotonicity, are 
examined. 

Definition 9: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗 , 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(𝑗 = 1,2, . . . , 𝑛)  be a finite group of 

CIVFFNs, and let 𝜑 = (𝜑1, 𝜑2, . . . , 𝜑𝑛)represent their weights satisfying the conditions: 𝜑𝑗 ∈ [0,1] 

and ∑ 𝜑𝑗 = 1
𝑛
𝑗=1 , then the CIVFFWA operator is defined as:  
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( ) ( )

( ) ( )
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
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Example 1: To develop the novel method, we consider an example with four CFFNs, such as: Њ1 =

([0.6,0.7]𝑒𝑖[0.4,0.8], [0.5,0.8]𝑒𝑖[0.3,0.5]),Њ2 = ([0.6,0.8]𝑒
𝑖[0.4,0.5], [0.4,0.5]𝑒𝑖[0.5,0.6]) ,  Њ3 =

([0.4,0.5]𝑒𝑖[0.3,0.5], [0.5,0.6]𝑒𝑖[0.5,0.7]),Њ4 = ([0.5,0.6]𝑒
𝑖[0.5,0.7], [0.3,0.5]𝑒𝑖[0.4,0.6])  are four values 

with corresponding weighted vector 𝜑 = (0.1,0.2,0.3,0.4), then we have:  
 

( ) ( )( ) ( )( ) ( )( ) ( )( )
0.1 0.2 0.3 0.44 3 3 3
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
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Using the Definition 9, we have CIVFFWA𝜑(Њ1,Њ2, . . . ,Њ4) =

([0.51,0.65]𝑒𝑖[0.42,0.64], [0.38,0.55]𝑒𝑖[0.43,0.56]). 

Theorem 2: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗 , 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛) be a group of CFFVs, then 

their resulting value under CIVFFWA operator is still a CFFV.  
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Proof: By the principle of mathematical induction, we outline the following major steps: 
Step 1: For 𝑛 = 2, then we have:  
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By Definition 9, we have:  
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Step 2: It holds for 𝑛 = 2. Next assuming that it is holds for 𝑛 = 𝑘, 𝑘 ≻ 0, then we have:  
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Step 3: If the given result holds for 𝑛 = 𝑘, next we show that it is true for 𝑛 = 𝑘 + 1. 
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It is true for 𝑛 = 𝑘 + 1. Thus, it is true for all positive integers n. 

Idempotency: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗, 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛)  be a group of CIVFFNs, 

such that Њ𝑗((1 ≤ 𝑗 ≤ 𝑛)) = Њ for all 𝑗, then:  
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CIVFFWA𝜑(Њ1,Њ2, . . . ,Њ𝑛) = Њ        (2) 

Boundedness: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗 , 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛)  be a finite group of 

CIVFFNs, then:  
Њ− ≤ CIVFFWA𝜑(Њ1,Њ2, . . . ,Њ𝑛) ≤ Њ

+       (3) 

Where, Њ− and Њ+ are called the minimum and maximum values. 

Monotonicity: Let two group Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗, 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛)  and Њ𝑗
∗ =

([𝑚𝑗
∗, 𝑛𝑗

∗]𝑒𝑖(𝑝𝑗
∗,𝑞𝑗

∗), [𝑑𝑗
∗, 𝑔𝑗

∗]𝑒𝑖(𝑟𝑗
∗,𝑠𝑗
∗)) (1 ≤ 𝑗 ≤ 𝑛) of CIVFFNs, under condition:𝑚𝑗 ≤ 𝑚𝑗

∗, 𝑛𝑗 ≤ 𝑛𝑗
∗, 𝑝𝑗 ≤

𝑝𝑗
∗, 𝑞𝑗 ≤ 𝑞𝑗

∗, 𝑑𝑗 ≥ 𝑑𝑗
∗, 𝑔𝑗 ≥ 𝑔𝑗

∗, 𝑟𝑗 ≥ 𝑟𝑗
∗, 𝑠𝑗 ≥ 𝑠𝑗

∗, then:  

CIVFFWA𝜑(Њ1,Њ1, . . . ,Њ𝑛) ≤ CIVFFWA𝜑(Њ1
∗ ,Њ2

∗ , . . . ,Њ𝑛
∗ )     (4) 

Definition 10: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗, 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛) be a collection of CIVFFNs, 

and let 𝜑 = (𝜑1, 𝜑2, . . . , 𝜑𝑛)  represent their weights satisfying the conditions: 𝜑𝑗 ∈ [0,1]  and 

∑ 𝜑𝑗 = 1
𝑛
𝑗=1 . And (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) be any permutation of (1,2, . . . , 𝑛), with Њ𝜎(𝑗) ≤ Њ𝜎(𝑗−1), 

then the CIVFFOWA operator is defined mathematically as:  
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Definition 11: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗, 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛)  be a finite group of 

CIVFFNs, and let 𝜑 = (𝜑1, 𝜑2, . . . , 𝜑𝑛) represent their weights satisfying the conditions: 𝜑𝑗 ∈ [0,1] 

and ∑ 𝜑𝑗 = 1
𝑛
𝑗=1 , then the CIVFFWG operator is defined as:  
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Theorem 3: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗 , 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛) be a group of CFFVs, then 

their resulting value under CIVFFWG operator is still a CFFV. 
Proof: For proof see the proof of Theorem 2. 

Idempotency: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗, 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛)  be a group of CIVFFNs, 

such that Њ𝑗((1 ≤ 𝑗 ≤ 𝑛)) = Њ for all 𝑗, then:  

CIVFFWG𝜑(Њ1,Њ2, . . . ,Њ𝑛) = Њ        (5) 

Boundedness: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗 , 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛) be a finite group of 

CIVFFNs, then:   
Њ− ≤ CIVFFWG𝜑(Њ1,Њ2, . . . , Њ𝑛) ≤ Њ

+       (6) 

Where, Њ− and Њ+ are called the minimum and maximum values. 

Monotonicity: Let two group Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗, 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛)  and Њ𝑗
∗ =

([𝑚𝑗
∗, 𝑛𝑗

∗]𝑒𝑖(𝑝𝑗
∗,𝑞𝑗

∗), [𝑑𝑗
∗, 𝑔𝑗

∗]𝑒𝑖(𝑟𝑗
∗,𝑠𝑗
∗)) (1 ≤ 𝑗 ≤ 𝑛) of CIVFFNs, under condition:𝑚𝑗 ≤ 𝑚𝑗

∗, 𝑛𝑗 ≤ 𝑛𝑗
∗, 𝑝𝑗 ≤

𝑝𝑗
∗, 𝑞𝑗 ≤ 𝑞𝑗

∗, 𝑑𝑗 ≥ 𝑑𝑗
∗, 𝑔𝑗 ≥ 𝑔𝑗

∗, 𝑟𝑗 ≥ 𝑟𝑗
∗, 𝑠𝑗 ≥ 𝑠𝑗

∗, then:  

CIVFFWG𝜑(Њ1,Њ1, . . . ,Њ𝑛) ≤ CIVFFWG𝜑(Њ1
∗ ,Њ2

∗ , . . . ,Њ𝑛
∗ )     (7) 

Definition 12: Let Њ𝑗 = ([𝑚𝑗 , 𝑛𝑗]𝑒
𝑖(𝑝𝑗,𝑞𝑗), [𝑑𝑗, 𝑔𝑗]𝑒

𝑖(𝑟𝑗,𝑠𝑗))(1 ≤ 𝑗 ≤ 𝑛) be a collection of CIVFFNs, 

and let 𝜑 = (𝜑1, 𝜑2, . . . , 𝜑𝑛)  represent their weights satisfying the conditions: 𝜑𝑗 ∈ [0,1]  and 

∑ 𝜑𝑗 = 1
𝑛
𝑗=1 . And (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) be any permutation of (1,2, . . . , 𝑛), with Њ𝜎(𝑗) ≤ Њ𝜎(𝑗−1), 

then the CIVFFOWG operator is defined mathematically as:  
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5. Algorithmic Selection of the Best Classroom Teaching Mode  

The multi-criteria group decision-making (MCGDM) process is employed to identify the most suit-
able option from a set of alternatives based on expert evaluations. A panel of specialists assesses each 
alternative using predefined criteria, assigning scores that reflect how well each option meets these 
standards. These scores are weighted according to the significance of each attribute, forming decision 
matrices that facilitate the overall evaluation. The experts' assessments are then aggregated to de-
termine the optimal choice, ensuring well-informed decision-making by incorporating multiple fac-
tors. MCGDM is widely applied across various domains, including business, engineering, and 
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economics, where decisions require thorough analysis of multiple aspects. By integrating diverse ex-
pert perspectives, it enhances decision accuracy and balance. This approach is particularly beneficial 
when numerous alternatives exist, each with distinct characteristics. Ultimately, MCGDM aids deci-
sion-makers in selecting the most appropriate option by leveraging expert insights and structured 
evaluation criteria. 

Algorithm: The process of selecting the most suitable teaching mode in a university involves ana-

lysing a list of teaching methods, represented as:Å = {Å1, Å2, . . . , Å𝑚} and evaluating them based on 

various factors 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑛} is a list of the factors considered when evaluating class room 
teaching modes. Each factor is given a specific weight, 𝜑 = {𝜑1, 𝜑2, . . . , 𝜑𝑛}, reflecting its importance 
in the decision-making process. A team of experts 𝐸 = {𝐸1, 𝐸2, . . . , 𝐸𝑘} assesses each teaching mode 
based on these factors. Additionally, each expert’s input is weighted by their significance, represented 
as 𝜔 = {𝜔1, 𝜔2, . . . , 𝜔𝑘}. The objective is to determine the most appropriate teaching mode by eval-
uating both the significance of various factors and the expertise of the decision-making team. This 
approach ensures a well-balanced and informed selection, aligning the chosen teaching method with 
students' learning needs for optimal outcomes. 

Step 1 − Decision-makers' insights can be structured into a matrix that evaluates different alter-
natives based on key attributes. This comparative approach facilitates a clearer understanding of each 
option, enabling a more informed and efficient selection of the most suitable alternative. 
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Step 2 − Combine all individual CIVFF decision matrices, such as 𝐸𝑡(1 ≤ 𝑡 ≤ 𝑘)  into a single 

collective CIVIF decision matrix 𝐸 = (Њ𝑖𝑗)𝑚𝑛  using the CIVFFWA and CIVFFWG operators with 

weights 𝜔 = {𝜔1, 𝜔2, . . . , 𝜔𝑘} for a unified group decision. 

Step 3 − Again using the CIVFFWA and CIVFFWG operators with weights 𝜑 = {𝜑1, 𝜑2, . . . , 𝜑𝑛}, the 
all preference values 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑚) are calculated from the collective decision matrix. These 
methods ensure a thorough evaluation by considering multiple factors systematically.  

Step 4 − Calculating the score functions by using Definition 7, of all preference values 𝜉 =
(𝜉1, 𝜉2, . . . , 𝜉𝑚)  entails assigning numerical assessments to each preference, facilitating precise 
evaluation within a specific context. 

Step 5 − Rank the options based on their scores values, with the highest ones being the most 
suitable and desirable. Select the best alternative based on the highest-ranking value.  

Figure 1 provides a visual representation of the step-by-step process for determining the most 
appropriate teaching mode, taking into account various factors, expert assessments, and their corre-
sponding weights. 
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Fig.1. Decision-Making Process for Optimal Teaching Mode Selection 

 
6. Illustrative Example 

Selecting appropriate teaching methods is essential for enhancing students' learning outcomes. 
Effective instructional strategies enable educators to cater to diverse student needs, fostering en-
gagement and motivation within the classroom. Consequently, this contributes to improved academic 
performance and a more enriching learning experience. 

Case Study: Classroom Teaching Model Selection: University teaching modes vary based on dif-
ferent approaches, including student engagement. However, management often selects methods 
without considering key factors, affecting effectiveness. Common teaching modes in university edu-
cation are discussed below. 

Å1: Lecture-Based Teaching (LBT): Instructors deliver content in a structured format, focusing on 
knowledge transfer through verbal explanations. 

Å2: Collaborative Learning Method (CLM): Students work together in groups, sharing ideas and 
solving problems, fostering teamwork and peer learning. 

Å3: Project-Based Learning (PBL): Students engage in extended projects that encourage problem-
solving and application of knowledge to real-world scenarios. 

Å4: Case-Based Learning (CBM): Students analyse and discuss real-life cases to develop problem-
solving and decision-making skills. 

Different institutions adopt various teaching methods, each with a unique approach. This study 
evaluates these methods based on key attributes essential for enhancing student learning. While mul-
tiple factors influence effectiveness, we focus on the following four: 
𝐶1: Student Engagement (SE): The method should promote active student engagement and par-

ticipation, maintaining interest and motivation throughout the lesson. 
 𝐶2 : Learning Objectives (LO): The method should align with the lesson's specific learning 

outcomes, ensuring the development of the intended skills, knowledge, or competencies. 
 𝐶3: Student Centred (SC): Effective teaching methods should prioritise learners' needs, interests, 
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and abilities, encouraging active participation in the learning process. 
 𝐶4: Assessment Compatibility: The method should support formative, diagnostic, and summative 

assessments, enabling continuous evaluation of students' understanding and progress. 
 The method should align with lesson objectives, ensuring students acquire essential skills and 

knowledge. It must actively engage students, maintaining motivation and participation. Additionally, 
it should be adaptable to diverse student needs and classroom settings while remaining feasible 
within available resources for effective learning. In this analysis, classroom teaching models 

{Å1, Å2, Å3, Å4}  are assessed based on the criteria {𝐶1, 𝐶2, 𝐶3, 𝐶4}  with the guidance of experts 
{𝐸1, 𝐸2, 𝐸3, 𝐸4}. Experts assess the effectiveness of each teaching model based on specific criteria to 
determine the most suitable approach for student learning. The expert evaluations are summarised 
in Tables 1–4. 

Table 1  
Assessment of Expert E1 

 𝑪𝟏  𝑪𝟐 𝑪𝟑 𝑪𝟒 

1A
 

   

   

2 0.56,0.75
0.64,0.75 ,

2 0.52,0.57
0.57,0.78

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.68
0.63,0.72 ,

2 0.48,0.57
0.55,0.73

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.68
0.63,0.72 ,

2 0.48,0.57
0.55,0.73

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.75
0.64,0.75 ,

2 0.52,0.57
0.57,0.78

i
e

i
e





 
 
 
 
   

2A
    

   

2 0.56,0.65

2 0.54,0.56

0.64,0.67 ,

0.54,0.67

i

i

e

e





 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.55,0.62 ,

0.58,0.69

i

i

e

e





 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.45,0.66 ,

0.48,0.59

i

i

e

e





 
 
 
   

   

   

2 0.56,0.65

2 0.54,0.56

0.64,0.67 ,

0.54,0.67

i

i

e

e





 
 
 
   

3A
    

   

2 0.54,0.70

2 0.45,0.58

0.58,0.69 ,

0.55,0.62

i

i

e

e





 
 
 
   

   

   

2 0.55,0.72

2 0.47,0.58

0.55,0.66 ,

0.61,0.67

i

i

e

e





 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.55,0.62 ,

0.58,0.69

i

i

e

e





 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.58,0.69 ,

0.55,0.62

i

i

e

e





 
 
 
   

4A
    

   

2 0.56,0.75
0.65,0.73 ,

2 0.52,0.57
0.56,0.76

i
e

i
e





 
 
 
 
   

   

   

2 0.63,0.65
0.54,0.76 ,

2 0.54,0.67
0.46,0.68

i
e

i
e





 
 
 
 
   

   

   

2 0.63,0.65
0.54,0.76 ,

2 0.54,0.67
0.46,0.68

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.75
0.65,0.73 ,

2 0.52,0.57
0.56,0.76

i
e

i
e





 
 
 
 
   

Table 2 
Assessment of Expert E2 

 𝑪𝟏  𝑪𝟐 𝑪𝟑 𝑪𝟒 

1A
 

   

   

2 0.65,0.67
0.62,0.67 ,

2 0.64,0.77
0.61,0.68

i
e

i
e





 
 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.48,0.59 ,

0.45,0.66

i

i

e

e





 
 
 
   

   

   

2 0.55,0.72

2 0.55,0.66

0.47,0.58 ,

0.61,0.67

i

i

e

e





 
 
 
   

   

   

2 0.63,0.68
0.54,0.82 ,

2 0.54,0.67
0.47,0.67

i
e

i
e





 
 
 
 
   

2A
    

   

2 0.54,0.65

2 0.46,0.65

0.52,0.72 ,

0.55,0.74

i

i

e

e





 
 
 
   

   

   

2 0.65,0.67
0.61,0.68 ,

2 0.64,0.77
0.62,0.67

i
e

i
e





 
 
 
 
   

   

   

2 0.63,0.65
0.54,0.76 ,

2 0.54,0.67
0.46,0.68

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.75
0.65,0.73 ,

2 0.52,0.57
0.56,0.76

i
e

i
e





 
 
 
 
   

3A
    

   

2 0.56,0.68
0.63,0.72 ,

2 0.48,0.57
0.55,0.73

i
e

i
e





 
 
 
 
   

   

   

2 0.52,0.72

2 0.46,0.65

0.54,0.65 ,

0.56,0.74

i

i

e

e





 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.55,0.62 ,

0.58,0.69

i

i

e

e





 
 
 
   

   

   

2 0.52,0.75
0.57,0.75 ,

2 0.56,0.57
0.64,0.78

i
e

i
e





 
 
 
 
   

4A
    

   

2 0.56,0.70

2 0.45,0.58

0.55,0.62 ,

0.53,0.73

i

i

e

e





 
 
 
   

   

   

2 0.65,0.67
0.64,0.77 ,

2 0.61,0.68
0.62,0.67

i
e

i
e





 
 
 
 
   

   

   

2 0.65,0.68
0.53,0.82 ,

2 0.54,0.67
0.46,0.67

i
e

i
e





 
 
 
 
   

   

   

2 0.45,0.66

2 0.45,0.58

0.54,0.73 ,

0.52,0.59

i

i

e

e





 
 
 
    

Table 3 
Assessment of Expert E3 

 𝑪𝟏  𝑪𝟐 𝑪𝟑 𝑪𝟒 

1A
 

   

   

2 0.56,0.65

2 0.54,0.56

0.65,0.68 ,

0.54,0.67

i

i

e

e





 
 
 
   

   

   

2 0.54,0.70

2 0.58,0.69

0.55,0.62 ,

0.45,0.58

i

i

e

e





 
 
 
   

   

   

2 0.65,0.67
0.61,0.68 ,

2 0.64,0.77
0.62,0.67

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.65

2 0.54,0.56

0.65,0.68 ,

0.54,0.67

i

i

e

e





 
 
 
 
   
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2A
    

   

2 0.56,0.68
0.63,0.72 ,

2 0.48,0.57
0.55,0.73

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.65

2 0.54,0.56

0.64,0.67 ,

0.54,0.67

i

i

e

e





 
 
 
   

   

   

2 0.45,0.66
0.54,0.70 ,

2 0.45,0.58
0.51,0.59

i
e

i
e





 
 
 
 
    

   

   

2 0.63,0.65
0.54,0.76 ,

2 0.54,0.67
0.46,0.68

i
e

i
e





 
 
 
 
   

3A
 

   

   

2 0.52,0.72

2 0.46,0.65

0.54,0.65 ,

0.56,0.74

i

i

e

e





 
 
 
   

   

   

2 0.52,0.72

2 0.46,0.65

0.54,0.65 ,

0.56,0.74

i

i

e

e





 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.58,0.69 ,

0.55,0.62

i

i

e

e





 
 
 
   

   

   

2 0.65,0.68
0.53,0.82 ,

2 0.54,0.67
0.46,0.67

i
e

i
e





 
 
 
 
   

4A
    

   

2 0.52,0.75
0.57,0.75 ,

2 0.56,0.57
0.64,0.78

i
e

i
e





 
 
 
 
   

   

   

2 0.55,0.72

2 0.47,0.58

0.55,0.66 ,

0.61,0.67

i

i

e

e





 
 
 
   

   

   

2 0.65,0.67
0.64,0.77 ,

2 0.61,0.68
0.62,0.67

i
e

i
e





 
 
 
 
   

   

   

2 0.63,0.65
0.54,0.76 ,

2 0.54,0.67
0.46,0.68

i
e

i
e





 
 
 
 
   

Table 4 
Assessment of Expert E4 

 𝑪𝟏  𝑪𝟐 𝑪𝟑 𝑪𝟒 

1A
 

   

   

2 0.54,0.70

2 0.45,0.58

0.58,0.69 ,

0.55,0.62

i

i

e

e





 
 
 
   

   

   

2 0.67,0.81
0.55,0.75 ,

2 0.64,0.70
0.54,0.64

i
e

i
e





 
 
 
 
   

   

   

2 0.54,0.84
0.45,0.74 ,

2 0.45,0.53
0.59,0.72

i
e

i
e





 
 
 
 
   

   

   

2 0.65,0.67
0.64,0.77 ,

2 0.61,0.68
0.62,0.67

i
e

i
e





 
 
 
 
   

2A
    

   

2 0.52,0.75
0.57,0.75 ,

2 0.56,0.57
0.64,0.78

i
e

i
e





 
 
 
 
   

   

   

2 0.63,0.65
0.54,0.76 ,

2 0.46,0.68
0.54,0.67

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.65

2 0.54,0.56

0.65,0.67 ,

0.56,0.69

i

i

e

e





 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.48,0.59 ,

0.45,0.66

i

i

e

e





 
 
 
   

3A
    

   

2 0.54,0.70

2 0.48,0.59

0.45,0.58 ,

0.45,0.66

i

i

e

e





 
 
 
   

   

   

2 0.52,0.75
0.64,0.78 ,

2 0.56,0.57
0.57,0.75

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.65

2 0.65,0.67

0.54,0.56 ,

0.57,0.69

i

i

e

e





 
 
 
   

   

   

2 0.45,0.66
0.54,0.70 ,

2 0.45,0.58
0.51,0.59

i
e

i
e





 
 
 
 
    

4A
    

   

2 0.65,0.67
0.61,0.68 ,

2 0.64,0.77
0.62,0.67

i
e

i
e





 
 
 
 
   

   

   

2 0.63,0.65
0.57,0.76 ,

2 0.54,0.67
0.48,0.68

i
e

i
e





 
 
 
 
   

   

   

2 0.54,0.84
0.59,0.72 ,

2 0.45,0.53
0.45,0.74

i
e

i
e





 
 
 
 
   

   

   

2 0.54,0.70

2 0.45,0.58

0.58,0.69 ,

0.55,0.62

i

i

e

e





 
 
 
   

Step 2: In Step 2, the data from Tables 1–4 is integrated into a single matrix using the proposed 
CIVFFWA and CIVFFWG operators, applying the weighted vector ω = 0.4, 0.2, 0.1, 0.3. These weights 
indicate the significance of each expert’s input in the decision-making process. The consolidated ma-
trices, shown in Tables 5 and 6, offer a comprehensive synthesis of expert evaluations, ensuring an 
accurate representation of both individual and collective judgments. 

Step 3 (i) − Again using the CIVFFWA operator, where 𝜑 = (0.3,0.3,0.2,0.2) we get the preference 
values as:  

𝜉1 = ([0.55,0.81]𝑒
𝑖[0.64,0.76], [0.54,0.58]𝑒𝑖[0.53,0.67]) 

𝜉2 = ([0.67,0.70]𝑒
𝑖[0.47,0.84], [0.49,0.57]𝑒𝑖[0.63,0.65]) 

𝜉3 = ([0.63,0.72]𝑒
𝑖[0.63,0.83], [0.47,0.64]𝑒𝑖[0.47,0.56]) 

𝜉4 = ([0.46,0.68]𝑒
𝑖[0.71,0.75], [0.42,0.65]𝑒𝑖[0.46,0.58]) 

Step 3 (ii) − Again using the CIVFFWG operator, we get the preference values as:  

𝜉1 = ([0.56,0.82]𝑒
𝑖[0.65,0.77], [0.51,0.68]𝑒𝑖[0.52,0.64]) 

𝜉2 = ([0.64,0.73]𝑒
𝑖[0.49,0.84], [0.62,0.67]𝑒𝑖[0.47,0.59]) 

𝜉3 = ([0.63,0.77]𝑒
𝑖[0.47,0.68], [0.42,0.59]𝑒𝑖[0.44,0.62]) 

𝜉4 = ([0.58,0.74]𝑒
𝑖[0.64,0.73], [0.46,0.59]𝑒𝑖[0.43,0.47]) 

Step 4 (i) − Calculating the score values of all preference values of Table 5 using Definition 7.  
𝑠𝑐𝑜𝑟𝑒(𝜉1) = 0.32, 𝑠𝑐𝑜𝑟𝑒(𝜉2) = 0.31, 𝑠𝑐𝑜𝑟𝑒(𝜉3) = 0.38, 𝑠𝑐𝑜𝑟𝑒(𝜉4) = 0.33 

Step 4 (ii) − Again computing the score values of all preference values of Table 6. 
𝑠𝑐𝑜𝑟𝑒(𝜉1) = 0.35, 𝑠𝑐𝑜𝑟𝑒(𝜉2) = 0.27, 𝑠𝑐𝑜𝑟𝑒(𝜉3) = 0.39, 𝑠𝑐𝑜𝑟𝑒(𝜉4) = 0.37 

Step 5 (i) − Ranking of all alternative is 𝜉3 ≻ 𝜉4 ≻ 𝜉1 ≻ 𝜉2.  

Step 5 (ii) − Ranking of all alternative is 𝜉3 ≻ 𝜉4 ≻ 𝜉1 ≻ 𝜉2.  
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Step 6 − Thus the best option is “Project-Based Learning”. 

Table 5 
By CIVFFWA Approach 

 𝑪𝟏  𝑪𝟐 𝑪𝟑 𝑪𝟒 

1A
 

   

   

2 0.67,0.83
0.54,0.73 ,

2 0.64,0.72
0.52,0.65

i
e

i
e





 
 
 
 
   

   

   

2 0.53,0.76
0.64,0.78 ,

2 0.53,0.69
0.48,0.64

i
e

i
e





 
 
 
 
   

   

   

2 0.55,0.67
0.59,0.67 ,

2 0.61,0.68
0.62,0.72

i
e

i
e





 
 
 
 
   

   

   

2 0.44,0.73

2 0.53,0.64

0.48,0.72 ,

0.55,0.76

i

i

e

e





 
 
 
   

2A
    

   

2 0.57,0.76
0.54,0.65 ,

2 0.64,0.79
0.56,0.68

i
e

i
e





 
 
 
 
   

   

   

2 0.55,0.73
0.55,0.65 ,

2 0.53,0.64
0.62,0.73

i
e

i
e





 
 
 
 
   

   

   

2 0.43,0.52
0.46,0.57 ,

2 0.64,0.78
0.52,0.73

i
e

i
e





 
 
  
   

   

   

2 0.45,0.67
0.51,0.56 ,

2 0.47,0.87
0.62,0.76

i
e

i
e





 
 
 
 
   

3A
    

   

2 0.56,0.65

2 0.65,0.74

0.63,0.75 ,

0.54,0.66

i

i

e

e





 
 
 
   

   

   

2 0.64,0.81
0.52,0.71 ,

2 0.64,0.70
0.53,0.64

i
e

i
e





 
 
 
 
   

   

   

2 0.54,0.84
0.59,0.72 ,

2 0.45,0.53
0.45,0.74

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.75
0.62,0.66 ,

2 0.64,0.77
0.54,0.67

i
e

i
e





 
 
 
 
   

4A
    

   

2 0.65,0.73

2 0.55,0.76

0.62,0.74 ,

0.46,0.76

i

i

e

e





 
 
 
   

   

   

2 0.61,0.79
0.45,0.64 ,

2 0.64,0.72
0.54,0.59

i
e

i
e





 
 
 
 
   

   

   

2 0.55,0.74

2 0.53,0.66

0.58,0.69 ,

0.62,0.73

i

i

e

e





 
 
 
   

   

   

2 0.53,0.72
0.65,0.68 ,

2 0.63,0.68
0.52,0.60

i
e

i
e





 
 
 
 
   

Table 6 
By CIVFFWG Approach 

 𝑪𝟏  𝑪𝟐 𝑪𝟑 𝑪𝟒 

1A
 

   

   

2 0.62,0.80
0.56,0.71 ,

2 0.64,0.71
0.53,0.64

i
e

i
e





 
 
 
 
 

 

   

   

2 0.55,0.74
0.58,0.69 ,

2 0.53,0.66
0.62,0.73

i
e

i
e





 
 
 
 
 

 

   

   

2 0.55,0.67
0.59,0.67 ,

2 0.61,0.68
0.62,0.72

i
e

i
e





 
 
 
 
 

 

   

   

2 0.54,0.75

2 0.53,0.64

0.58,0.74 ,

0.57,0.76

i

i

e

e





 
 
 
 

 

2A
    

   

2 0.57,0.76
0.52,0.66 ,

2 0.65,0.79
0.55,0.67

i
e

i
e





 
 
 
 
 

 

   

   

2 0.55,0.73

2 0.53,0.64

0.55,0.65 ,

0.62,0.73

i

i

e

e





 
 
 
 

 

   

   

2 0.65,0.78
0.55,0.77 ,

2 0.64,0.72
0.54,0.64

i
e

i
e





 
 
 
 
 

 

   

   

2 0.65,0.73

2 0.53,0.78

0.68,0.78 ,

0.61,0.76

i

i

e

e





 
 
 
 

 

3A
    

   

2 0.56,0.65

2 0.63,0.77

0.68,0.79 ,

0.52,0.62

i

i

e

e





 
 
 
 

 

   

   

2 0.43,0.52
0.46,0.57 ,

2 0.64,0.78
0.52,0.73

i
e

i
e





 
 
 
 
 

 

   

   

2 0.54,0.84
0.59,0.72 ,

2 0.45,0.53
0.45,0.74

i
e

i
e





 
 
 
 
 

 

   

   

2 0.53,0.72
0.65,0.68 ,

2 0.63,0.68
0.52,0.60

i
e

i
e





 
 
 
 
 

 

4A
    

   

2 0.65,0.73

2 0.53,0.78

0.66,0.79 ,

0.52,0.76

i

i

e

e





 
 
 
   

   

   

2 0.61,0.79
0.45,0.64 ,

2 0.64,0.72
0.54,0.59

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.76
0.63,0.78 ,

2 0.53,0.60
0.58,0.64

i
e

i
e





 
 
 
 
   

   

   

2 0.56,0.75
0.62,0.66 ,

2 0.64,0.77
0.54,0.67

i
e

i
e





 
 
 
 
   

Tables 7 and 8 present the score functions for all methods, offering a detailed performance com-
parison.  

Table 7 
 Scores Values of All Proposed Methods 

Options CIVFFWA CIVFFOWA CIVFFWG CIVFFOWG 

Lecture-Based Teaching 0.32 0.34 0.35 0.36 
Collaborative Learning Method 0.31 0.23 0.27 0.33 
Project-Based Learning 0.38 0.37 0.39 0.41 
Case-Based Learning 0.33 0.36 0.37 0.38 

 
Table 8 
 Ranking of Alternatives Based on Score Values 

Methods Score Values  Ranking of Alternatives 

CIVFFWA ( ) ( ) ( ) ( )3 4 1 2score A score A score A score A
 

3 4 1 2A A A A
 

CIVFFOWA ( ) ( ) ( ) ( )3 4 1 2score A score A score A score A
 

3 4 1 2A A A A
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CIVFFWG ( ) ( ) ( ) ( )3 4 1 2score A score A score A score A
 

3 4 1 2A A A A
 

CIVFFOWG ( ) ( ) ( ) ( )3 4 1 2score A score A score A score A
 

3 4 1 2A A A A
 

Additionally, Figures 2 and 3 visually illustrate the ranking and range of each method, highlighting 
their relative effectiveness. Together, these figures provide a comprehensive overview of the 
strengths and limitations of the evaluated methods. 

 
Fig.2. Ranking of the Proposed Methods 

 
Fig.3. Graphical Presentation of All Methods 

 
7. Comparative Analysis 

To validate our research, we compare our model and methods with existing ones using model-
wise and methods-wise approaches. This evaluation highlights the strengths and effectiveness of our 
proposed approach. 

Model-Wise: CIVFSs improve traditional fuzzy models by using complex numbers to handle 
higher-dimensional hesitation and uncertainty. They work well in areas like pattern recognition, con-
trol systems, and decision-making. Unlike IVIF-Set, IVPyF-Set, and IVFF-Set, which use real numbers, 
CIVFSs offer a more flexible and precise way to model complex systems. They can manage uncertainty 
better than other models, making them useful for a wide range of applications (𝑛 + 𝑔 ≤ 1, 𝑛2 + 𝑔2 ≤
1, 𝑛3 + 𝑔3 ≤ 1). CIVFSs provide a more comprehensive model. While real-number-based models 
structure hesitation and uncertainty well, they cannot handle complex numbers, limiting their use for 
intricate data. Despite this, they remain useful for managing uncertainty and supporting decision-
making in various fields. Meanwhile, CIVIFS and CIVPyFS with limitations on magnitude and phase 
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(𝑛 + 𝑔 ≤ 1, (
𝑞

2𝜋
) + (

𝑠

2𝜋
) ≤ 1, 𝑛2 + 𝑔2 ≤ 1, (

𝑞

2𝜋
)
2

+ (
𝑠

2𝜋
)
2

≤ 1) respectively were improving vague-

ness representation. By incorporating complex numbers, the proposed model enhances decision 
analysis, providing a robust framework for handling intricate and uncertain data. It improves uncer-
tainty management, especially in complex scenarios, leading to more precise decision-making. But 
CIVFF- Set introduces complex-valued membership and non-membership degrees with 𝑛3 + 𝑔3 ≤ 1 

and(
𝑞

2𝜋
)
3

+ (
𝑠

2𝜋
)
3

≤ 1. For example, the value Њ = ([0.62,0.73]𝑒𝑖[0.71,0.75], [0.68,0.84]𝑒𝑖[0.64,0.82]) 

fails satisfy the condition for these sets which are: 𝑛 + 𝑔 ≤ 1, (
𝑞

2𝜋
) + (

𝑠

2𝜋
) ≤ 1 and 𝑛2 + 𝑔2 ≤ 1. 

(
𝑞

2𝜋
)
2

+ (
𝑠

2𝜋
)
2

≤ 1. i.e., 0.73 + 0.84 = 1.57 ≻ 1 and (
0.75

2𝜋
) + (

0.82

2𝜋
) = 1.57 ≻ 1. This data cannot 

be handled using CIVIFS. Next (0.73)2 + (0.84)2 = 1.23 ≻ 1  and (
0.75

2𝜋
)
2

+ (
0.82

2𝜋
)
2

= 1.23 ≻ 1 . 

Therefore, CIVPyFS is unable to process this information. Now (0.73)3 + (0.84)3 = 0.98 ≺ 1 and 

(
0.75

2𝜋
)
3

+ (
0.82

2𝜋
)
3

= 0.97 ≺ 1. Thus, CIVFFS can effectively process this information, as shown in Table 

9. 

Table 9 
Comparison of New Model with Existing Models 

Models Uncertainty Falsity Indeterminacy Periodicity Multi-
Dimensional 
Information 

Power in 
Square 

Power 
in Cube  

FSs1 1 0 0 0 0 0 0 
IFSs2 1 1 1 0 0 0 0 
IVIFSs8 1 1 1 0 0 0 0 
PyFSs9 1 1 1 0 0 1 0 
IVPyFSs12 1 1 1 0 0 1 0 
FFSs15 1 1 1 0 0 0 1 
IVFFSs17 1 1 1 0 0 0 1 
CFSs18 1 0 0 1 1 0 0 
CIFSs19 1 1 1 1 1 0 0 
CIVIFSs23 1 1 1 1 1 0 0 
CPyFSs25 1 1 1 1 1 1 0 
CIVPyFSs30 1 1 1 1 1 1 0 
CIVFFS 1 1 1 1 1 1 1 

 
This framework represents a significant advancement over existing models, offering greater 

adaptability in complex decision-making. Its flexible structure allows it to accommodate diverse con-
texts, ensuring more accurate and reliable outcomes. Unlike traditional models, it efficiently handles 
uncertainty and hesitation, enabling more precise and informed decision-making across various ap-
plications. 

Methods-Wise: To validate our methods, we will compare them with existing approaches to 
demonstrate their flexibility and reliability. Benchmarking against established models will highlight 
their superior adaptability and performance. Rigorous testing will confirm their effectiveness in han-
dling diverse scenarios, proving their efficiency and real-world applicability. 

  
8. Conclusion and Implications 

This research introduced CIVFFS, a novel framework integrating CFFS and IVFFS to enhance deci-
sion-making by representing two-dimensional information. By allowing both membership and non-
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membership functions to take interval values, CIVFFS improves the modelling of hesitation, uncer-
tainty, and complexity. We developed new approaches—CIVFFWA, CIVFFOWA, CIVFFWG, and CIVF-
FOWG—and analysed their fundamental properties. To demonstrate practical applicability, we ap-
plied these methods to evaluate classroom teaching modes, assessing key influencing factors and 
ranking them based on score values. The findings confirmed the effectiveness of the proposed meth-
ods in handling time-sensitive decision-making problems. This study advances decision-making meth-
odologies by offering a robust framework for managing complexity and uncertainty, particularly in 
education and other practical domains, ensuring greater accuracy and reliability than existing models. 
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