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The integration of Artificial Intelligence (AI) with predictive analytics is catalysing 
digital transformation within the fashion industry, reshaping operational procedures 
and influencing decision-making practices. This study introduces a decision-making 
framework that leverages predictive modelling techniques in conjunction with Multi-
Criteria Decision-Making (MCDM) methods to enhance ergonomics in fashion 
manufacturing. The framework recognises the pivotal role of AI in facilitating 
automated design processes and inventory forecasting, alongside optimising supply 
chain operations to promote sustainable ergonomic practices. Specifically, the 
framework employs Autoencoder Recurrent Neural Network (RNN) models—advanced 
deep learning methods—to deliver improved accuracy in forecasting customer demand 
and identifying consumer preferences. AI-powered generative design contributes to 
reduced material waste and enhanced production efficiency, aligning with the goals of 
operational excellence and ergonomic compliance. Moreover, intelligent logistics 
systems and Internet of Things (IoT)-driven analytics within supply chain management 
support cost reduction and risk mitigation efforts. To systematically assess and 
prioritise ergonomic considerations, the Analytic Hierarchy Process (AHP) technique is 
incorporated into the framework. This integration facilitates structured evaluations of 
alternatives, enabling transparent and data-informed decisions that strike a balance 
between worker comfort, sustainability, and productivity. Additionally, AI applications 
in fashion retail enhance the consumer experience by enabling virtual product trials, 
delivering personalised recommendations, and providing interactive digital support. 
The adoption of AI in fashion retail is largely attributed to its capabilities in simulating 
product testing and offering tailored customer services, including digital assistance. 
The proposed framework thus supports sustainable manufacturing practices and 
worker well-being while fostering robust, data-centric managerial decision-making. 
Ultimately, the integration of MCDM with predictive analytics and AI forms the 
foundation for achieving responsible operations and human-centred production 
design, which are critical for the fashion sector's long-term viability. 
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1. Introduction 
The integration of AI into the fashion industry brings significant ergonomic advantages for 

manufacturers, enhancing the efficiency of production engineers and operations teams [20]. The 
increasing routinisation of tasks within fashion manufacturing exposes workers to various ergonomic 
risks, including repetitive strain injuries, awkward postures, and inefficient workflows that demand 
excessive time or skill [6]. AI-driven assistive technologies offer transformative potential by optimising 
workspace configurations, monitoring worker health, and improving overall production efficiency 
[3]]. Ergonomic design in manufacturing focuses on tailoring tools, systems, and workspaces to align 
with human capabilities, thereby ensuring safety, comfort, and productivity [5]. Traditionally, 
ergonomic assessments in the fashion sector rely on manual evaluations and static workstation 
configurations [12]. However, such conventional methods fall short in adapting to the dynamic nature 
of contemporary manufacturing environments. The adoption of AI tools, machine learning 
algorithms, and real-time monitoring systems introduces AI-generated content (AIGC) into 
workplaces, enabling continuous tracking and enhancement of performance and safety metrics [32].  

AIGC plays a pivotal role in refining ergonomic conditions by generating workplace designs aimed 
at minimising fatigue and physical strain. AI-powered simulation tools can suggest workstation 
layouts that mitigate biomechanical stress while promoting optimal posture and movement [23]. For 
instance, generative AI models may propose improvements to sewing stations, such as adjusting chair 
heights, altering table inclinations, and eliminating foot pedals. These refinements have been shown 
to reduce the occurrence of musculoskeletal disorders and facilitate healthier posture during 
repetitive tasks [26]. Beyond intelligent workstation design, AI-based wearable technologies are being 
adopted in fashion manufacturing to address ergonomic challenges [14]. These innovations include 
sensor-equipped gloves, AI-guided posture correction devices, and exoskeletons that detect and 
rectify improper body movements [2]. Such tools not only deliver real-time feedback but also help 
prevent chronic injuries, thereby reducing long-term healthcare costs and employee absenteeism 
[24]. AI-enhanced exoskeletons also assist with material handling by redistributing weight, thereby 
alleviating pressure on the lower back and joints [21].  

Another area where AI contributes significantly to ergonomic improvement is in workflow 
automation. AI-driven systems utilise real-time production data to identify ergonomic inefficiencies 
and propose task optimisation strategies [16]. For example, machine learning models analyse 
workflow distribution, break schedules, and movement patterns to ensure tasks are evenly allocated 
among workers, thus preventing overburdening and fostering a balanced work environment [30]. 
Moreover, AI interfaces employing Natural Language Processing (NLP) enable direct communication 
between employees and ergonomic support systems, delivering immediate feedback and 
adjustments to work practices [9].  A key component in this evolving framework is the application of 
MCDM techniques, particularly the AHP. AHP is essential in systematically evaluating and ranking 
multiple ergonomic factors within the decision-making process. By decomposing complex design 
challenges into structured hierarchies of goals, criteria, and alternatives, AHP enables transparent, 
rational, and data-driven selections. For example, when choosing between different workstation 
designs, AHP considers variables such as biomechanical load, user comfort, cost-efficiency, and 
adaptability to various body types, ensuring that both ergonomic and operational objectives are 
addressed.  

AI is also revolutionising ergonomic training in manufacturing. Traditional training approaches 
were often static and lacked the adaptability to meet individual ergonomic needs [4]. In contrast, AI-
powered Virtual Reality (VR) and Augmented Reality (AR) simulations provide personalised training 
modules tailored to each worker’s ergonomic challenges. These immersive environments allow 
employees to practise correct lifting techniques, seating postures, and safe movements virtually 
before transitioning to actual work scenarios [8]. Furthermore, these AI-driven modules adapt in real 
time based on user feedback and performance metrics, facilitating more effective and responsive 
learning [31]. Despite its promise, implementing AIGC-based ergonomic solutions presents several 
challenges. These include high initial capital investment, the need for specialised infrastructure, and 
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potential resistance from workers adapting to AI-integrated systems [10]. Additionally, ethical 
concerns around AI-based monitoring and data privacy must be addressed in line with regulatory 
standards and employee expectations [22]. Nonetheless, advancements in AI, generative modelling, 
and real-time analytics are steadily reducing costs and improving accessibility, making AIGC-based 
ergonomic interventions increasingly viable for future applications [28]. The application of AIGC in 
ergonomic enhancements marks an important advancement towards a more human-centred 
manufacturing paradigm. These AI-based systems actively anticipate and mitigate ergonomic hazards, 
contributing to safer, more efficient, and sustainable workplaces. Future developments in predictive 
analytics, adaptive robotics, and intelligent automation are expected to further improve productivity 
and employee wellbeing by fostering ergonomically sound manufacturing practices. At present, the 
emergence of AIGC is redefining industry standards of ergonomic excellence, establishing technology 
as a vital component in achieving operational efficiency centred around human workers [27].  

This research project examines the role of AI in fashion enterprises, with particular focus on its 
utility in automating product development, forecasting fashion trends, managing inventory, and 
optimising supplier networks. It specifically analyses how deep learning models, such as Autoencoder-
RNN, enhance demand forecasting and consumer preference analysis. The study also investigates the 
impact of predictive AI analytics on sustainable production practices, operational efficiency, and cost 
reduction. The findings demonstrate that AI integration is reshaping strategic decision-making in 
fashion, fostering sustainable business practices while enduring profitability.  

 
2. Literature Review 

The application of AI-based ergonomic solutions in fashion manufacturing has been examined 
with respect to their effectiveness, practicality, and contribution to workplace safety. Various studies 
have explored the enhancement of worker comfort and productivity through technological 
advancements such as AI-enabled workstation optimisation, motion tracking, and intelligent assistive 
devices. Innovations including AI-powered exoskeletons, real-time posture correction systems, and 
workflow management platforms have demonstrated significant ergonomic benefits.  In addition to 
their technical advantages, the economic and regulatory aspects of adopting these technologies have 
also been considered. These include cost-benefit analyses, relevant policy frameworks, and alignment 
with long-term sustainability goals. As the fashion sector progressively shifts towards more worker-
centric and efficient production models, this literature review identifies key innovations with the 
greatest impact, evaluates their associated advantages, and highlights current limitations in the 
deployment of AIGC-based ergonomic interventions. The most critical methods employed in the 
implementation of AIGC-driven ergonomic strategies are summarised in the following table, along 
with their respective strengths and limitations. Table 1 presents the problem formulations associated 
with traditional ergonomic techniques for comparison.  

Table 1 
Problem Formulation of the Conventional Techniques 

Author(s) Techniques Involved Advantages Disadvantages 

Ji et al. [13] DHM, RULA, Clearance 
Analysis 

Improved Posture, Reduced Strain, 
Higher Productivity 

High Cost, Worker Adaptation 
Issues 

Mousavi and 
Naeini [17] 

AHP in OHS Better Risk Assessment, Structured 
Decision-Making 

Subjectivity, Reliance on Expert 
Input 

 
Liu et al. [15] 

AHP, Entropy Weight, Cloud 
Model 

Improved Supplier Selection, Balanced 
Weighting 

Data-Intensive, Complex 
Implementation 

Mustajib et al. 
[18] 

AHP-Entropy Grey Clustering Efficient Sorting, Better Decision 
Accuracy 

Data Pre-Processing, Expert 
Dependency 

Dey and Mondal 
[7] 

REBA for Ergonomic 
Assessment 

Identifies High-Risk Tasks, Posture 
Improvement 

Resistance to Change, Cost 
Implications 
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A redeveloped stitching workstation for manual Kolhapuri footwear was proposed using Digital 
Human Modelling (DHM) to assess ergonomic efficiency through clearance analysis and Rapid Upper 
Limb Assessment (RULA) [13]. The redesign led to improvements in posture, reduced physical strain, 
and enhanced productivity. However, the solution involved significant investment and required 
adaptation from the workforce, and its practical effectiveness needed real-world validation. In the 
context of occupational health and safety (OHS), a decision-making framework was established using 
the AHP to rank workplace hazards and assess ergonomic risks [17]. The structured model provided 
improved clarity in managing complex safety challenges, integrating expert judgement to develop 
targeted interventions. Although the method enhanced accuracy and transparency, it was limited by 
subjectivity in pairwise comparisons and dependence on expert consensus, highlighting the need for 
broader validation and refinement.  

An integrated performance assessment model combining AHP, entropy weight method, and cloud 
modelling was used to evaluate prefabricated component suppliers [15]. AHP facilitated the 
development of a structured evaluation framework, while the entropy weight method calculated 
criteria weights objectively based on data variability. The cloud model addressed uncertainty and 
imprecision in supplier assessment. Although this hybrid model improved decision reliability and 
supply chain efficiency, the process was resource-intensive, requiring extensive data and expert 
involvement.  A novel multi-criteria sorting technique was introduced by integrating AHP, entropy 
weighting, and grey clustering to manage uncertainty in remanufacturing core quality [18]. AHP 
structured the decision process, entropy weighting provided objective prioritisation of criteria, and 
the grey clustering algorithm enabled sorting of components with ambiguous quality levels. The 
method enhanced classification accuracy and resource utilisation, though it involved complex 
implementation and significant data pre-processing, alongside reliance on expert input.  

An ergonomic risk assessment was conducted in the apparel finishing sector using the Rapid Entire 
Body Assessment (REBA) technique, focusing on the impact of body mass index (BMI) on head and 
neck postures [7]. Through observational analysis of garment workers, high-risk activities such as 
ironing, quality inspection, and packing were identified. A clear correlation between poor posture and 
elevated BMI was found, contributing to musculoskeletal strain. Recommendations included 
redesigning workstations and seats and introducing posture training to enhance safety and 
performance. While existing ergonomic assessment tools such as DHM, RULA, REBA, AHP, and 
entropy-based models offer structured evaluation mechanisms, they are constrained by high costs, 
dependence on expert knowledge, and limited adaptability in dynamic manufacturing contexts. The 
proposed AIGC-driven approach addresses these limitations by integrating real-time tracking, 
predictive analytics, and customisable design capabilities. Unlike conventional static models, AIGC 
systems enable continuous learning and automated ergonomic interventions, resulting in improved 
safety, efficiency, and scalability across fashion manufacturing environments.  

 
3. Proposed System Model  

A comprehensive method is proposed which establishes an AI-based decision support system 
incorporating MCDM techniques particularly the AHP in combination with predictive analytics to 
achieve forward-looking ergonomic optimisation in fashion manufacturing. The integration of deep 
learning models, especially Autoencoder-RNN structures, allows the system to generate accurate 
demand forecasts and evaluate consumer preferences effectively. These predictive capabilities 
facilitate automation in design processes and production planning, reducing material wastage and 
limiting instances of overproduction. The framework further employs generative AI tools to advance 
sustainable fashion product development while simultaneously improving ergonomic workstation 
layouts. In parallel, smart logistics systems enhanced by IoT technologies enable real-time tracking 
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and support proactive management of operational risks across the supply chain. Within this structure, 
AHP serves as a key instrument by systematically organising conflicting ergonomic and operational 
priorities—such as worker wellbeing, productivity, and sustainability—into a structured hierarchy. By 
leveraging expert input and pairwise comparisons, the method assigns relative importance to each 
criterion, promoting a balanced and data-informed decision-making process.  

This integrated approach ensures that decision-making throughout the fashion production cycle, 
from initial design to final distribution, is guided by ethical considerations, operational efficiency, and 
empirical evidence. The fashion industry is currently undergoing notable transformation. According 
to projections, global sales within the sector are expected to grow steadily over the next two to three 
years [28]. Two major shifts have been identified as drivers of this growth: firstly, the emergence of 
new markets in regions such as Latin America and Asia-Pacific, which are anticipated to account for 
more than half of global fashion sales; secondly, a decline in reliance on Western markets as the 
primary source of industry momentum. Technological advances including robotics, augmented and 
virtual reality, advanced data analytics, mobile connectivity, and artificial intelligence are reshaping 
the sector. These innovations are influencing not only enterprise strategies but also altering consumer 
behaviours, with a marked shift toward digital engagement. The conceptual design of the proposed 
model is illustrated in Figure 1.  

 
Fig.1: Proposed System Model 

The objective of this research is to explore and evaluate the integration of AI automation within 
the textile and apparel industries. The study investigates various emerging trends across the fashion 
and textile sectors that are influenced by AI applications. The incorporation of AI has brought about 
significant transformations in these industries, reshaping traditional practices and operational 
models. The following section provides an overview of the concept of AI, along with its practical 
implementation and deployment within the context of textile and apparel manufacturing.  

3.1 Autoencoder-RNN 
The artificial neural network architecture known as an autoencoder is employed across various 

applications, including image processing and data denoising. Autoencoders significantly improve 
anomaly detection accuracy when compared with both linear and kernel Principal Component 
Analysis (PCA), making them a suitable choice for this study. While linear PCA often fails to detect 
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minor anomalies, autoencoders can identify these with greater precision. Furthermore, the training 
process for autoencoders is more straightforward, as it avoids the complex mathematical operations 
associated with kernel PCA. The autoencoder structure consists of three sequential layers. The input 
layer accepts raw data input, denoted as Xi, which is then encoded and subsequently decoded 
through hidden layers referred to as the encoder and decoder blocks. The decoder reconstructs 
encoded features from the final output of the encoder, which compresses the data into a lower-
dimensional representation than the original input. The size of the initial input remains equivalent to 
the resulting output feature vector [33]. To enhance detection capabilities, the study incorporates a 
RNN model into the autoencoder framework for analysing both consumer and business preferences. 
This integration addresses the limitations of traditional feedforward neural networks by leveraging 
the sequential modelling capacity of RNNs. Unlike feedforward networks, RNNs possess recurrent 
connections that enable them to process sequences, making them well-suited for applications such 
as speech recognition and language processing [11].  

The proposed model processes input data by transforming it into vector representations through 
a two-step procedure comprising unsupervised pre-training and supervised fine-tuning. During the 
pre-training phase, features are extracted from the data within an unsupervised framework that 
compresses the input. Each component of the autoencoder functions as a standard RNN unit. The 
encoder includes four hidden layers with 64, 32, 16, and 8 channels, respectively. The decoder follows 
a reversed configuration with layers of 8, 16, 32, and 64 channels. Once the weights and biases are 
appropriately configured, the RNN-autoencoder learns hierarchical feature representations from 
unlabelled input data. The final network layer is trained using labelled samples during the supervised 
fine-tuning stage. To achieve optimal performance, this supervised training criterion must be applied 
during the refinement process. At the top layer, a SoftMax regression function with two output 
channels assigns a probability between 0 and 1 to each class label, ensuring that the sum of 
probabilities equals 1.  

3.2 Applications for AI Technique 
Fashion is considered one of the world’s most valuable industries, with an estimated worth of 

approximately $3 trillion, representing around 2 percent of the global gross domestic product [19]. 
For decades, the industry adhered to conventional methods; however, the advent of digital 
transformation has ushered in notable shifts across its structure and operations. The integration of 
AI into fashion has been significantly facilitated by digital technologies, which have enhanced access 
to vast datasets. Retail outlets and online platforms have increasingly adopted AI-powered 
applications within customer service functions to collect and analyse consumer data, enabling a 
deeper understanding of individual preferences. Given the constantly evolving nature of fashion 
trends, AI has proven effective in validating extensive consumer data to forecast emerging styles with 
greater accuracy. Businesses are also leveraging mobile-enabled virtual assistants and interactive 
technologies such as smart mirrors, which utilise facial recognition and expression analysis to suggest 
personalised fashion choices. The application of AI in fashion design has become a widespread 
practice during the current era of technological advancement.  

3.3 Artificial Intelligence for Generating Sustainable Fashion 
The fashion industry is widely recognised as a significant contributor to environmental 

degradation, largely due to its intensive consumption of natural resources, including leather, which 
often exceed sustainable supply levels. Fast fashion practices involve high volumes of water usage for 
dyeing processes and lead to considerable textile waste. With new collections introduced monthly 
and fashion items being replaced weekly, the cycle of consumption exacerbates environmental 
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pressure. In response, the integration of AI into fashion production processes is facilitating a shift 
towards more sustainable practices. AI supports the development of efficient manufacturing systems 
aimed at reducing waste, optimising resource utilisation, and ensuring ethical operations throughout 
the supply chain.  

Environmental harm in fashion stems from pollutant emissions during manufacturing, excessive 
production of textile waste, and escalating carbon footprints. To counter these effects, AI 
technologies are being employed to design sustainable workflows, introduce intelligent 
manufacturing mechanisms, and improve supply chain efficiency. A pivotal application in this regard 
is generative design software, which utilises AI algorithms to create patterns that minimise or 
eliminate material waste. AI-driven analytical tools enable organisations to better forecast product 
requirements, thereby reducing surplus production, inventory levels, and associated waste. 
Moreover, AI contributes to sustainable textile production by supporting fibre selection processes 
and identifying eco-friendly materials, while also enhancing waste recycling practices.  

Furthermore, AI plays a critical role in enabling circular fashion models, particularly by facilitating 
the sorting and upcycling of used garments. The adoption of AI-powered virtual try-on solutions and 
intelligent recommendation systems reduces the need for physical samples and product returns, 
thereby cutting down shipping-related emissions. In addition, blockchain technology enhanced by AI 
is being used to ensure end-to-end traceability in the materials supply chain, promoting transparency 
and accountability in ethical sourcing and labour practices. AI is thus driving the fashion industry's 
transition towards a more environmentally responsible and ethically conscious future, where 
technological solutions aid in waste reduction, support fair labour standards, and encourage 
consumer engagement through personalised and sustainable fashion choices [29].  

3.4 Predictive Analytics and AI for Trend and Demand Forecasting 
Predictive analytics and AI are significantly transforming trend and demand forecasting, 

particularly within the fashion, retail, and consumer goods sectors. Traditional forecasting methods, 
which largely depended on intuition supported by historical sales data, often resulted in inefficiencies 
such as overproduction, underutilised labour, and inventory shortages. In contrast, AI-driven 
predictive analytics enables the generation of precise, real-time demand forecasts by analysing vast 
datasets. These technologies can anticipate emerging fashion trends and consumer preferences well 
in advance, allowing businesses to respond proactively. Machine learning models support data-
informed decision-making in pricing, marketing, and inventory management by accounting for 
dynamic external variables, including seasonality, economic fluctuations, and competitive strategies. 
These models refine their predictive accuracy over time through continuous learning. Furthermore, 
AI-based forecasting contributes to the timely production and delivery of goods, enhancing supply 
chain efficiency, minimising resource wastage, and lowering operational costs. By reducing excess 
inventory, enhancing customer satisfaction, and enabling tailored offerings, AI strengthens business 
performance and sustainability. The integration of AI and predictive analytics into demand and trend 
forecasting enhances a company's capacity to swiftly adapt to evolving market conditions, 
strengthens data-driven strategic decisions, and ultimately provides a competitive edge in the rapidly 
changing consumer landscape [1].  

3.5 Artificial Intelligence for Product, Inventory and Supply Chain Management 
AI is redefining the management of supply chain operations, inventory control, and product 

lifecycle by enhancing efficiency, reducing operational costs, and minimising the need for human 
intervention in decision-making. Traditional supply chain systems often encounter issues such as 
unpredictable demand shifts, supply chain disruptions, and suboptimal inventory practices, which can 
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result in either stock shortages or excessive inventory. AI-based technologies address these 
limitations by leveraging automation, machine learning algorithms, and real-time data analysis to 
optimise resource allocation and operational effectiveness. In product management, AI facilitates 
demand-aligned production by analysing historical sales data, market trends, and consumer 
preferences. Predictive analytics and sentiment analysis contribute to more accurate product 
development cycles, reducing the risks associated with new product launches and improving the 
alignment between offerings and market expectations [25].  

AI-powered inventory management systems incorporate computer vision, IoT sensor networks, 
and predictive modelling to continuously monitor inventory levels and autonomously detect 
anomalies. These systems streamline restocking processes, reduce holding costs, and enhance 
accuracy in inventory planning. Machine learning models further refine inventory strategies by 
analysing sales trends, supplier lead times, and seasonal fluctuations to ensure optimal stock 
availability without overburdening storage capacity. In logistics, AI technologies improve supply chain 
coordination by integrating external data sources, such as traffic conditions and weather forecasts, 
to enhance delivery efficiency. Optimisation algorithms enable more accurate route planning for last-
mile delivery, reducing fuel consumption and minimising delays. Additionally, AI contributes to risk 
management by forecasting potential disruptions through analysis of macroeconomic indicators, 
supplier reliability, and geopolitical factors, thereby enabling proactive mitigation strategies. The 
integration of AI into supply chain, inventory, and product management promotes lean operations by 
enhancing sustainability, cost efficiency, and responsiveness. Using real-time data and automated 
decision-making processes, organisations can improve agility, reduce operational risks, and deliver 
superior customer experiences while simultaneously maximising profitability.  

3.6 AHP with MCDM  
Within fashion manufacturing, the optimisation of ergonomics through the integration of MCDM 

techniques and AI offers a systematic and objective means of navigating complex decision-making 
scenarios. The proposed AI-enabled decision support framework incorporates the AHP within the 
broader MCDM approach to assess and prioritise ergonomic, operational, environmental, and 
economic parameters linked to sustainable production systems. Initially, predictive analytics—driven 
by machine learning models and historical performance data—identifies critical ergonomic risks, 
indicators of worker comfort, and factors influencing productivity. These variables are subsequently 
structured within the AHP framework, allowing for the allocation of weighted importance to each 
criterion based on expert input and real-time operational feedback.  

The resulting decision matrix from AHP is subjected to further analysis through an MCDM method 
such as TOPSIS, VIKOR, or PROMETHEE, facilitating the ranking of optimal manufacturing system 
configurations, equipment layouts, and workforce scheduling strategies. This integrated approach 
equips stakeholders with a data-grounded, transparent, and defensible basis for ergonomic decision-
making, thereby enhancing occupational health and safety, improving employee comfort, and 
promoting operational efficiency. Embedding ergonomics within a broader AI-driven manufacturing 
ecosystem ensures that sustainable fashion production remains aligned with human-centred design 
principles while also addressing technical feasibility and economic sustainability.  

 
4. Performance Evaluation 

AI applications within the fashion industry have significantly enhanced operational efficiency, 
supported sustainability initiatives, and improved responsiveness to market dynamics in real time. 
Machine learning-driven predictive analytics facilitate more accurate forecasting of fashion trends, 
thereby reducing errors in production planning and ensuring that product offerings align closely with 
consumer preferences. In the context of sustainable fashion, AI contributes by promoting the optimal 
utilisation of textile resources, thus limiting material waste and mitigating environmental damage. 
Tools powered by AI for material selection support the adoption of biodegradable and recyclable 
fabrics, which are essential to the development of circular fashion models. The integration of 
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blockchain with AI enhances transparency across the supply chain, particularly in terms of ethical 
sourcing and responsible labour practices. AI-based optimisation in supply chain management 
reduces excess inventory, prevents stockouts and overstocking, and lowers associated operational 
costs. Furthermore, machine learning models for demand forecasting refine inventory management 
processes by adjusting stock levels according to accurate consumption patterns. In warehousing 
operations, advanced AI systems enable automation and improve logistics performance by reducing 
lead times and increasing distribution efficiency.  

In design processes, AI empowers fashion creators to accelerate the development of innovative 
and trend-responsive garments. Enhanced logistics efficiency is achieved through AI-supported route 
optimisation and improved resource allocation. Moreover, AI-powered customer service tools, such 
as chatbots, strengthen customer engagement and satisfaction, fostering brand loyalty. In 
sustainability-driven operations, machine learning technologies contribute to lower emissions and 
greater energy efficiency during production. Organisations that incorporate AI-driven systems are 
positioned to gain strategic advantages, making informed decisions through data analytics. Adopting 
AI fosters organisational agility and economic resilience, securing a competitive edge in the rapidly 
evolving fashion landscape. The input images, along with data on commercial preferences and 
customer demands, are illustrated in Figure 2 and the resulting output in Figure 3.  

 

 
Fig.2: Input Images 

 
Fig.3: Validation of Commercial and Customer Requirements 

Figure 4 presents the comparative performance evaluation of multiple AI-based models using 
standard classification metrics, namely Accuracy, Precision, Recall, and F1-Score. The analysis 
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encompasses four distinct models: the proposed Autoencoder-Recurrent Neural Network (AE-RNN), 
Faster R-CNN, Mask R-CNN, and Vision Transformer (ViT). Performance values across these metrics 
range from 65% to 100%, reported as percentages. Among the assessed methods, the AE-RNN model 
demonstrates superior performance across all four metrics, achieving over 97% in Accuracy, 96% in 
Precision, approximately 97% in Recall, and 96% in F1-Score. These outcomes confirm AE-RNN as the 
most effective model within the evaluation framework.  

In comparison, the Faster R-CNN model yields the lowest performance, with an Accuracy of 88%, 
and both Precision and Recall at approximately 85%, resulting in an F1-Score of 86%. Although the 
Mask R-CNN model shows marginal improvement over Faster R-CNN, attaining around 90% Accuracy, 
88% Precision, 89% Recall, and an F1-Score near 88%, its performance remains notably below that of 
AE-RNN. The ViT model achieves slightly higher metrics than Mask R-CNN, reporting an Accuracy of 
91%, Precision of 90.1%, Recall of 91%, and F1-Score of 90.8%. Despite outperforming both R-CNN 
variants, ViT still does not reach the classification effectiveness demonstrated by AE-RNN. Overall, 
the AE-RNN model exhibits clear performance dominance, outperforming all other models in each 
evaluated criterion. This consistent superiority underscores its robustness and reliability for the 
intended application, as reflected in the substantial differences observed in Accuracy, Precision, 
Recall, and F1-Score.  

 
Fig.4: Validation of Accuracy 

Figure 5 illustrates a comparative analysis of computational performance metrics for the 
proposed AE-RNN model alongside Faster R-CNN, Mask R-CNN, and ViT. The evaluation includes three 
key indicators: inference time (measured in milliseconds and shown in blue), model size (measured 
in megabytes and represented in green), and floating-point operations (FLOPs, measured in gigaflops 
and depicted in red). Among the models assessed, AE-RNN demonstrates the highest computational 
efficiency, combining the lowest inference time with a relatively compact model size of approximately 
100 MB and a reduced computational demand of 55 GFLOPs. In contrast, both Faster R-CNN and Mask 
R-CNN exhibit significantly higher resource consumption, with model sizes averaging around 250 MB, 
extended inference durations, and elevated FLOPs in the range of 120 to 130 GFLOPs. The ViT model 
occupies an intermediate position, with a model size of 175 MB and computational complexity of 95 
GFLOPs, thereby offering a balance between operational efficiency and predictive performance. 
Overall, the AE-RNN model proves to be the most computationally efficient of the group, while Faster 
R-CNN and Mask R-CNN are identified as the most resource-intensive.  
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Fig.5: Validation of Computational Metrices 

Figure 6 presents a comparative evaluation of the proposed AE-RNN model alongside Faster R-
CNN, Mask R-CNN, and ViT, using three key performance metrics: mean Average Precision (mAP) for 
detection (blue), Intersection over Union (IoU) for segmentation (green), and Top-5 Retrieval 
accuracy (red). The AE-RNN model demonstrates superior results across all parameters, achieving the 
highest mAP of approximately 80% and an IoU of nearly 70%, indicating its strong detection and 
segmentation capabilities. Faster R-CNN and Mask R-CNN exhibit lower detection and segmentation 
performance, with mAP scores of roughly 75% and 77%, and IoU values around 62% and 64%, 
respectively. In comparison, the ViT model offers competitive results, attaining a mAP of 
approximately 78% and an IoU close to 68%. All four models perform consistently well in retrieval 
tasks, as Top-5 Retrieval accuracy exceeds 90% across the board. The AE-RNN model achieves the 
most balanced and robust performance, outperforming conventional CNN-based architecture in 
detection and segmentation tasks while maintaining a high retrieval efficiency.  

 
Fig.6: Model Comparison  

Figure 7 illustrates the retrieval accuracy comparison among the proposed AE-RNN model, Faster 
R-CNN, Mask R-CNN, and ViT, using three key metrics: Top-1 Accuracy, Top-5 Accuracy, and Top-10 
Accuracy. The proposed model achieves the highest performance across all three measurements, 
attaining approximately 87% in Top-1 Accuracy, around 96% in Top-5 Accuracy, and nearly 99% in 
Top-10 Accuracy. Faster R-CNN records a Top-1 Accuracy of 75%, with improvements observed in 
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Top-5 (88%) and Top-10 (93%) retrieval accuracies. Mask R-CNN delivers moderate outcomes, 
achieving 78% in Top-1 Accuracy, 91% in Top-5, and 96% in Top-10. The ViT model demonstrates 
relatively better retrieval accuracy than Mask R-CNN, with Top-1, Top-5, and Top-10 scores reaching 
approximately 80%, 93%, and 98%, respectively. The evaluation confirms that the AE-RNN model 
outperforms all other models, particularly in Top-1 retrieval accuracy, establishing its superiority for 
high-precision image retrieval applications.  

 
Fig.7: Received Accuracy 

Figure 8 presents the Receiver Operating Characteristic (ROC) curves for four models: the 
proposed AE-RNN model, Faster R-CNN, Mask R-CNN, and ViT, in relation to their class discrimination 
capabilities. The graph plots the False Positive Rate (FPR) along the x-axis and the True Positive Rate 
(TPR) along the y-axis. The Area Under the Curve (AUC) metric serves as a key indicator of 
classification performance, with higher values reflecting stronger discriminatory power. Among all 
tested models, the proposed AE-RNN achieves the highest AUC score of 0.97, highlighting its 
outstanding accuracy in class distinction tasks. ViT follows with an AUC of 0.90, signifying solid 
classification reliability. Mask R-CNN achieves a moderate AUC score of 0.82, whereas Faster R-CNN 
records the lowest performance with an AUC of 0.74. These findings confirm that the AE-RNN model 
significantly outperforms conventional architectures by maintaining a high true positive rate and 
limiting false positives, thus affirming its superior effectiveness in classification contexts.  

 
Fig.8: ROC Comparison  
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Figure 9 illustrates two performance graphs generated during the training process of a deep 
learning model over 100 epochs. The left-hand plot, depicting training accuracy, shows a consistent 
upward progression, ultimately reaching 0.97 (97%) by the final epoch. Concurrently, validation 
accuracy follows a similar trend, stabilising slightly below the training accuracy at approximately 0.94 
(94%). This pattern indicates robust learning performance with minimal overfitting. The 
accompanying "Training vs. Validation Loss" graph reveals a corresponding trend in loss values, where 
the model initially records a high loss of around 0.8. As training progresses, a marked decrease occurs, 
with loss values reducing to approximately 0.05 by the hundredth epoch. The close alignment 
between the training and validation loss trajectories signifies that the model generalises effectively 
across datasets. The consistent balance observed between training and validation performance 
metrics throughout the training cycle confirms the model’s stable learning behaviour and sound 
generalisation capability.  

 
Fig.9: Validation Measures of Accuracy and Loss 

The selection of the most appropriate artificial intelligence model for deployment within the 
fashion sector necessitates a comprehensive evaluation of both predictive performance and 
computational efficiency, as reflected in the comparative assessment table. Among the four 
examined models, AE-RNN, Faster R-CNN, Mask R-CNN, and ViT—the AE-RNN consistently 
outperforms its counterparts across all major evaluation dimensions. Specifically, it records the 
highest Accuracy (97.3%), Precision (96%), Recall (96.8%), and F1-Score (96%), confirming its 
reliability for classification and detection-related functions. In terms of object detection and 
segmentation capabilities, AE-RNN also secures leading values, achieving a mean Average Precision 
(mAP) of 80% and an IoU score of 70%.  

Table 2 
Consolidated Decision Matrix of AI Models for Sustainable Fashion Applications—Including Performance 
Metrics, AHP Weights, Normalised Scores, and Final Rankings 

Criteria Weight (%) AE-RNN ViT Mask R-CNN Faster R-CNN 
Accuracy 20% 0.97(1.00/.20) 0.91 (0.94 / 0.188) 0.90(0.93/0.186) 0.88(0.91/0.182) 
Precision 15% 0.96(1.00/0.15) 0.901 (0.94 / 0.141) 0.88 (0.92 / 0.138) 0.85 (0.89 / 0.134) 
Recall 15% 0.97(1.00/0.15) 0.91 (0.94 / 0.141) 0.89(0.92/0.138) 0.85(0.88/0.132) 
F1-Score 10% 0.96(1.00/0.10) 0.908(0.95/0.095) 0.88(0.92/0.092) 0.86(0.90/0.090) 
Computational 
Efficiency 

15% High(1.00/0.15) Medium(0.79/0.119) Low(0.55/0.083) Low(0.45/0.068) 

Retrieval Accuracy 10% 96%(1.00/.10) 93% (0.97 / 0.097) 91%(0.95/ .095) 88%(0.92/ .092) 
Detection (mAP) 5% 80%(1.00/.05) 78% (0.975 / 0.049) 77%(0.963/.048) 75%(0.938/.047) 
Segmentation (IoU) 5% 70%(1.00/ .05) 68% (0.971 / 0.049) 64%(0.914/0.046) 62%(0.886/0.044) 
AUC Score 5% 0.97(1.00/ 0.05) 0.90 (0.928/ 0.046) 0.82(0.845/0.042) 0.74(0.763/0.038) 
Total Weighted Score 100% 1.000 0.905 0.868 0.827 
Final Ranking — 1st 2nd 3rd 4th 
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Furthermore, the model demonstrates exceptional retrieval performance, with Top-1, Top-5, and 
Top-10 accuracy levels reaching 87%, 96%, and 99%, respectively. In addition to its predictive 
excellence, AE-RNN exhibits notable computational efficiency, characterised by the lowest inference 
time (80 milliseconds), minimal model size (100 MB), and reduced computational complexity (55 
GFLOPs), making it particularly suitable for real-time fashion supply chain applications. Its robust 
classification ability is further supported by a high Area Under the ROC Curve (AUC) score of 0.97. 
Conversely, although models such as Faster R-CNN and Mask R-CNN offer acceptable outcomes, they 
fall short in both predictive accuracy and resource efficiency. Consequently, based on the aggregated 
performance metrics and their weighted significance, AE-RNN attains the highest rank within the 
decision matrix, rendering it the most appropriate AI-based solution for fostering innovation, 
enhancing sustainability, and advancing operational responsiveness in the dynamic fashion industry.  

 
5. Conclusion 

Fashion manufacturing is undergoing a transformative shift through the integration of artificial 
intelligence, which addresses operational demands alongside sustainability challenges and 
ergonomic considerations. This study proposes a comprehensive AI-driven decision support system 
that combines predictive analytics with MCDM techniques to improve ergonomic outcomes while 
advancing ethical manufacturing practices and optimising production processes. AI contributes to 
enhanced manufacturing capabilities by forecasting market demand, facilitating automation in 
operations and resource allocation, and enabling sustainable decision-making that minimises waste, 
protects workforce welfare, and fosters organisational adaptability. Advanced personalisation 
engines, supported by AI and integrated with the AHP in retail contexts, facilitate virtual try-on 
technologies and recommendation systems, thereby improving consumer satisfaction. Concurrently, 
AI-based solutions in product development and logistics help reduce delivery timelines and mitigate 
inefficiencies within the supply chain. The collective findings highlight the strategic role of AI in 
enabling sustainable, human-centred innovation across the contemporary fashion industry. The 
continued advancement of artificial intelligence is expected to ensure the long-term viability of the 
clothing sector by strengthening operational efficiency and embedding ethical manufacturing 
methods grounded in ergonomic principles.  
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