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Abstract. In order to fulfil the ever increasing requirements of various hard 

and difficult-to-machine materials in automobile, turbine, nuclear, aviation, 

tool and die making industries, the conventional material removal processes 

are now being continuously substituted by an array of non-traditional 

machining (NTM) processes. The efficient and improved capabilities of these 

NTM processes have made them indispensible for the present day 

manufacturing industries. While deploying a particular NTM process for a 

specific machining application, the concerned process engineer must be aware 

of its capability which is influenced by a large number of controllable 

parameters. In this paper, an intelligent decision model is designed and 

developed in VBASIC to guide the concerned process engineer to have an idea 

about the values of various NTM process responses for a given parametric 

combination. It would also advise about the tentative settings of different NTM 

process parameters for achieving a set of target response values. It would thus 

aim in assisting the process engineers and designers to efficiently identify the 

technically feasible NTM processes in the early design and machining stages, 

focusing more on developing the required product functionalities and 

appearance with the feasible processes in mind, utilizing the process 

characteristics more effectively. The operational procedure of this developed 

decision model is demonstrated with the help of three real time examples. 

Key words: Non-traditional machining process; Parameter; Response; 

Decision model; VBASIC. 

1. Introduction   

The emerging need for generating intricate and precise shape features in various 

advanced engineering materials, like high-strength-temperature-resistant alloys, 

tungsten carbide, titanium and its alloys, ceramics, fibre-reinforced composites, 
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stainless steel, refractories etc. has resulted in development of a group of new 

machining processes, collectively known as non-traditional machining (NTM) 

processes. These advanced materials, having higher strength, toughness, hardness, 

low machinability and other varied properties, are in demand in various 

manufacturing industries, like automobile, nuclear, aviation, missile, tool and die 

making etc. In conventional machining processes, material removal usually takes place 

in the form of chips while applying forces on the workpiece using a wedge-shaped 

cutting tool which is harder than the work material. These processes usually incur 

higher cost with respect to tool wear and poor quality due to the generation of residual 

stresses in work material. They are also incapable to attain the dimensional accuracy 

and surface finish as desired by the modern day manufacturing industries. In these 

processes, as the relative motion between the tool and workpiece is typically rotary or 

reciprocating, the generated shape is thus restricted to only circular or flat features, 

and except in computer-numerical control (CNC) tools, machining of three-

dimensional surfaces is extremely difficult. Thus, in order to cater the needs of higher 

dimensional accuracy (in micro- or nano-level), surface finish, capability to machine 

difficult-to-cut materials with high strength-to-weight ratio, low surface damage, 

minimum tolerance, automated data transmission and miniaturization, the 

conventional machining processes are now being gradually replaced by the NTM 

processes (Jain, 1980; Pandey & Shan, 1980; El-Hofy, 2005). In NTM processes, instead 

of sharp cutting tools, energy in its direct form is employed to remove material from 

the workpiece surface. These processes usually adopt mechanical, thermal, electrical 

and chemical energies or any combination of them for removing materials in the shape 

of micro-chips or atoms to achieve the desired accuracy and machined surface without 

any burr. In these processes, there is also no physical contact between the tool and 

workpiece, and the related material removal mechanism is not dependant on the 

mechanical properties of the work materials. Some of the NTM processes can also 

machine workpieces in areas inaccessible for the conventional machining techniques. 

Thus, these enhanced and efficient capabilities of NTM processes have made them 

almost indispensible and popular at the shop floor (Rajurkar et al., 2017). Over the 

years, more than 20 different NTM processes have been successfully developed and 

deployed to meet the diverse needs of the present day manufacturing industries. In 

order to make efficient use of the NTM processes, it thus becomes necessary to 

understand the exact nature of the machining problem. They can never replace the 

conventional machining processes, and a particular NTM process may be highly 

acceptable for a given set of requirements, but it may sometimes fail to prove its 

acceptability under different machining conditions. Thus, an extensive knowledge 

regarding the capabilities of various NTM processes is crucial in order to select the 

most suitable NTM process to generate the desired shape feature on a given work 

material. Existence of a large number of NTM processes with diverse uniqueness and 

capabilities has compelled the process engineers to develop structured approaches for 

NTM process selection for assorted machining applications. In this direction, 

development of a decision making framework in the form of an intelligent knowledge-

based system is worth demanding. The developed intelligent decision model would 

help the process engineers in multi-directional ways, like (a) selecting the most 

suitable NTM process for a given problem, (b) managing a huge volume of machining 

data and responding quickly, (c) standardizing the conclusions drawn from a given 

data set, and (d) capturing the scarce expertise and making it available for subsequent 

use. 

The remainder of the paper is organized as follows. Section 2 presents the 

applications of different methodologies adopted by the past researchers for NTM 
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processes selection. Section 3 describes the developmental framework of the decision 

model. Section 4 presents three examples to demonstrate the applicability and 

usefulness of the developed model. Finally, Section 5 concludes the paper, highlighting 

its assumptions, limitations and future directions. 

2. Literature review 

Yurdakul & Cçogun (2003) proposed an NTM process selection method for a given 

application requirement while combining analytic hierarchy process (AHP) and 

technique for order of preference by similarity to the ideal solution (TOPSIS). The 

alternative NTM processes were first narrowed down to a set of feasible solutions 

which were subsequently ranked based on their suitability for the desired application. 

Chakraborty & Dey (2006) developed an AHP method-based expert system with a 

graphical user interface to find out the most apposite NTM process with the highest 

acceptability index value. Chakraborty & Dey (2007) applied quality function 

deployment (QFD) methodology for identification of the most suitable NTM process 

for a given industrial application based on the development of a house of quality 

matrix for comparing the considered product and process characteristics. Chakladar 

& Chakraborty (2008) integrated AHP and TOPSIS methods in order to select the most 

appropriate NTM process for a specific work material and shape feature combination. 

Chandraseelan et al. (2008) developed a web-based knowledge base system for 

identification of the most suitable NTM process based on some input parameters and 

process capability requirements. Chakladar et al. (2009) proposed a digraph-based 

approach to entirely automate the NTM process selection procedure. Based on the 

capabilities of the considered NTM processes to generate a desired shape on a given 

material, they were subsequently ranked in decreasing order of preference. 

Sugumaran et al. (2010) presented a neural network-based approach to help the 

process engineers in preparing a list of feasible NTM processes for a specific 

machining operation on a given work material. Karande & Chakraborty (2012) solved 

four real time NTM process selection problems while applying an integrated 

PROMETHEE (preference ranking organization method for enrichment evaluation) 

and GAIA (geometrical analysis for interactive aid) approach. Temuçin et al. (2013) 

employed both fuzzy and crisp-based approaches to solve NTM process selection 

problems, and developed a decision support model to assist the process engineers to 

arrive at the correct NTM process selection decision. Roy et al. (2014) first applied 

fuzzy AHP method for estimating the relative importance of various NTM processes 

based on several product and process characteristics, and later adopted QFD 

methodology for evaluating the performance scores of various NTM processes to 

choose the best one. Sarkar et al. (2015) proposed a multi-objective optimization on 

the basis of ratio analysis (MOORA) method-based decision support system for 

selection of NTM processes having a given set of quantitative and qualitative selection 

attributes. Madić et al. (2015b) combined AHP, MOORA and TOPSIS methods for 

determination of the relative significance of various quality criteria, and hence, 

selection of the most suitable NTM process for a given application. Based on a hybrid 

multi-criteria decision making (MCDM) framework, Azaryoon et al. (2015) developed 

a knowledge-based system for identification of NTM processes. The developed 

approach employed the combined applications of decision making trial and evaluation 

laboratory (DEMATEL), analytic network process (ANP) and VIKOR 

(VIšekriterijumsko KOmpromisno Rangiranje) methods to evaluate various 

performance measures, such as applicability of workpiece material and shape 
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features, process capabilities, and cost-related factors. Madić et al. (2015a) applied 

operational competitiveness rating analysis (OCRA) method as an MCDM tool for 

selection of the NTM processes from a large number of candidate alternatives. Saenz 

et al. (2015) proposed a novel method for selection and comparison of non-traditional 

sheet metal cutting processes. Khandekar & Chakraborty (2016) applied fuzzy 

axiomatic design principles for selection of the most appropriate NTM processes for 

generating cavities on ceramics, and micro-holes on hardened tool steel and titanium 

materials. Chatterjee et al. (2017) presented a novel hybrid approach consisting of 

factor relationship (FARE) and multi-attributive border approximation area 

comparison (MABAC) methods for selection and evaluation of NTM processes. The 

FARE method was first applied to determine the corresponding criteria weights, and 

the alternative NTM processes are later ranked using MABAC method. Roy et al. 

(2017) proposed a combined application of fuzzy AHP and QFD methods for 

investigating the relative significance of different technical requirements in an NTM 

process selection approach, and also identified the suitability of electrochemical 

machining process for a specified industrial application. Prasad & Chakraborty (2018) 

developed a decision guidance framework to assist the process engineers in choosing 

the most suitable NTM process for a given machining application and identifying the 

ideal process parameter settings for the said process. Yurdakul et al. (2019) presented 

intuitionistic and triangular fuzzy-based models for ranking of the suitable NTM 

processes for machining of some specific shape features on the given work materials. 

The performance of those models was later compared with that of crisp-based models. 

Amalnik (2019) proposed a feature-based expert system for optimization of design of 

an abrasive waterjet machining process. The corresponding database would consist of 

lists of 20 work materials, eight abrasive types and four machine types. The developed 

expert system would aid the process engineers while providing information with 

respect to machining cycle time, machining cost and cutting rate.  Rohith et al. (2019) 

first adopted a data envelopment analysis (DEA)-based model for shorlisting the 

efficient NTM processes for a given shape feature and work material combination, and 

then employed AHP, TOPSIS and OCRA methods for ranking and selection of the 

efficient NTM processes. Yurdakul & İç (2019) presented the applications of fuzzy-

based models of AHP and TOPSIS methods for NTM process selection for a particular 

work material and shape feature combinations. Talib and Asjad (2019) developed a 

model using AHP method for prioritizing as well as ranking of various NTM processes 

based on 27 evaluation criteria. Chakraborty et al. (2020) integrated rough numbers 

with MABAC method to identify the most feasible NTM processes for generation of 

standard through holes in glass and deep through cavities in titanium work materials. 

Based on firefly algorithm, Singh & Shukla (2020) developed a graphical user 

interface for selecting the optimal input parameters for electrochemical machining, 

electrochemical micro-machining and electrochemical turning processes.  

From an extensive review of the existing literature, it has been observed that 

varieties of expert systems have already been developed so as to help the process 

engineers in identifying the most competent NTM processes for different work 

material and shape feature combinations. Those developed expert systems have also 

been integrated with several other mathematical techniques, like AHP, ANP, TOPSIS, 

DEA, QFD etc. for arriving at the best courses of action. Those expert systems have 

been so designed and developed that they could only identify the most apposite NTM 

processes for varying machining applications. The expert system developed by Prasad 

& Chakraborty (2018) could only advise the concerned process engineers about the 

tentative parametric settings of the chosen NTM processes, apart from selecting the 

most competent NTM processes to fulfil different  application requirements.  
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No research work has been carried out till date so as to predict the most probable 

values of various responses based on a given combination of different NTM process 

parameters or envisage the tentative settings of various NTM process parameters so 

as to achieve the most desired values of the considered responses. In this paper, an 

attempt is thus put forward so as to design and develop an intelligent decision model 

in Visual BASIC (VBASIC) that would help the process engineers in advising about the 

achievable values of different responses for a specific set of NTM process parameters 

or selecting the optimal parametric mix in order to attain a set of target responses. The 

developed system is supposed to be flexible and versatile enough as it encompasses 

all the available NTM processes, work materials and shape features, and also user-

friendly and interactive as it always guides the end users in arriving at the optimal 

selection decision.  

3. Development of the Decision Model   

The procedural steps in the form of a flowchart in order to run this developed 

intelligent decision model without any error are exhibited in Figure 1.  

 

Figure 1. Flowchart exhibiting procedural steps of the developed decision 

model 

At first, it would ask the end user to select the type of the NTM operation to be 

performed along with the combination of work material to be machined and 

shape/sub-shape feature to be generated. Once the NTM operation is specified, two 

lists containing the controllable parameters and responses associated with the 

selected NTM process would now appear in the next screen of the developed system. 

The end user would then be directed to preselect the machining parameters as 

available in that NTM process along with the set of desired responses in order to fulfil 

the end product requirements. The end user can also choose all the available NTM 
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process parameters and responses while pressing the ‘SELECT ALL’ functional key. It 
would then direct the end user to input the desired values of the identified NTM 

process parameters based on which the tentative values of the selected responses would be provided on pressing of the ‘OK’ button. Here, only the available values of 

the selected process parameters for a particular NTM process would appear in the 

screen in the form of drop-down menus. The reverse approach can also be augmented in this decision model while selecting the ‘RESPONSE TO PP’ functional key. The end 

user can also choose all the available NTM process parameters and responses while pressing the ‘SELECT ALL’ functional key, and select the ‘RESPONSE TO PP’ for having 

the tentative values of the NTM process parameters. It would then direct the end user 

to input the desired ranges of the identified NTM responses as beneficial and non-

beneficial criteria based on which the conditional values of the selected process parameters would be provided on pressing the ‘OK’ button. Here, only the available 

values of the selected responses for a particular NTM process would appear in the 

screen in the form of drop-down menu. If the end user opts for generating infeasible 

shape features or machining unsuitable materials using any of the considered NTM 

processes, an error message would appear indicating the incapability of that NTM 

process to generate the chosen shape feature on the given material. In this case, the 

end user has to repeat the procedural steps of NTM process selection from the 

beginning. In this paper, 17 NTM processes, i.e. (a) abrasive jet machining (AJM), (b) 

abrasive water jet machining (AWJM), (c) electron beam machining (EBM), (d) 

electrochemical grinding (ECG), (e) electrochemical machining (ECM), (f) 

electrochemical discharge machining (ECDM), (g) electro-discharge machining (EDM), 

(h) electro jet drilling (EJD), (i) focused ion beam machining (FIB), (j) hot chlorine 

machining (HM), (k) laser beam machining (LBM), (l) magnetorheological finishing 

(MRF), (m) plasma arc machining (PAM), (n) photochemical milling (PCM), (o) 

ultrasonic machining (USM), (p) wire electro-discharge machining (WEDM) and (q) 

water jet machining (WJM) are considered for subsequent development of the 

intelligent decision model. Similarly, the list of the considered work materials consists 

of  (a) Alumina, (b) Aluminium, (c) Boron carbide, (d) Ceramics, (e) Composites, (f) 

Cemented tungsten carbide, (g) Duralumin, (h) Inorganic glass, (i) Inconel 718, (j) 

Inconel 800, (k) Inconel 825, (l) Incoloy, (m) Monel 400, (n) Monel K-500, (o) Nickel, 

(p) Nimonics, (q) Plastics, (r) Refractories, (s) Silicon nitride, (t) Silicon carbide, (u) 

Steel, (v) Stainless steel, (w) Titanium (ASTM Grade I), (x) Tungsten carbide and (y) 

Titanium-based super alloys. This system takes into consideration the following shape 

and sub-shape features for subsequent generation on the selected work material: 

 (a) Holes (i) Precision holes (D ≤ 0.25 mm) (where D = diameter) 

(ii) Precision holes (D > 0.25 mm)  (iii) Standard holes (L/D ≤ 20)   (where L/D = length/diameter = slenderness 

ratio) 

(iv) Standard holes (L/D > 20) 

(b) Cavities (i) Precision (aspect ratio ≤ 5) 

(ii) Standard  

(c) Surfacing 

(i) Double contouring 

(ii) Surface of revolution 

(d) Through cutting 

(i) Shallow (depth of cut < 40 µm) 

     (ii) Deep (depth of cut > 40 µm) 
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(e) Finishing. 

The entire database containing the capabilities of all the considered NTM processes 

with respect to workpiece material, and shape and sub-shape features to be generated 

is stored in MS-ACCESS linked with VBASIC, and the decisions regarding values of 

various responses and settings of the NTM process parameters are arrived at based 

on sets of simple IF-THEN rules.  

4. Illustrative examples   

In order to demonstrate the applicability and usefulness of the developed decision 

model in the domain of NTM processes, the following three examples are cited.  

4.1 Example 1: Electro-discharge machining In this example, it is supposed that precision cavities with aspect ratio ≤ 5 need to 
be generated on Inconel 718 alloy using EDM process. For this machining application, 

the corresponding input window in the form of a graphical user interface is shown in 

Figure 2.  

 

Figure 2. Input window for the first example Pressing of the ‘OK’ functional key then leads the end user to the next window, as 

exhibited in Figure 3, where the lists of all the important EDM process parameters, i.e. 

peak current, open circuit voltage, pulse-on time, duty factor, flushing pressure, pulse-

off time, dielectric level, tool electrode lift time, polarity, type of the tool and flushing 

speed, and responses, like surface crack density, tool wear ratio (TWR), 

perpendicularity error (PE), material removal rate (MRR), surface roughness (SR), 

overcut (OC), electrode wear rate, edge deviation, white layer thickness and micro-

harness are displayed. In this example, at first, the end user selects peak current, open 

circuit voltage, pulse-on time, duty factor, polarity and type of the tool as the 

controllable process parameters as available in the considered EDM set-up. On the 

other hand, based on the end product requirements, surface crack density, TWR, PE, 

MRR, SR and micro-hardness are treated with utmost importance. The end user can 

also choose all the EDM process parameters and responses while pressing the ‘SELECT ALL’ key. Now, when the ‘NEXT’ button is pressed, in the subsequent window, as 
depicted in Figure 4, the end user is opted to enter the appropriate values for the 

preselected EDM process parameters based on which the approximate values of the 

shortlisted responses would be predicted. In this example, the end user chooses the 

options as peak current = 9 A, open circuit voltage = 60V, pulse-on time = 100 µs, duty factor = 70%, polarity = positive and tool material = copper.  Now, when the ‘OK’ 
button is pressed, this decision model would guide the end user to have an idea about 

various responses envisaged as surface crack density = 0.0055-0.0057 µm/µm2, MRR 

= 89.12-89.18 mm3/min, SR = 6.2-6.7 µm, PE = 0.09-1.11%, micro-hardness = 392.40-

392.50 HV and TWR = 0.0012-0.0016.  
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Figure 3. Window for selection of EDM process parameters and responses  In Figure 3, when the end user presses the ‘RESPONSE TO PP’ functional key, the 
settings of the preselected EDM process parameters can be predicted based on the 

chosen values of the shortlisted EDM responses.  As exhibited in Figure 5, the end user 

desires to have high value of MRR (59.881-89.164 mm3/min), and low values of 

electrode wear rate (0.011-0.059 mm3/min), SR (2.133-4.866 µm), OC (0.03-0.19 

mm), surface crack density (0.008-0.011 µm/µm2), white layer thickness (16.646-17.866 µm) and micro-hardness (352.600-407.755 HV). Based on these input 

response values, the developed decision model predicts the related EDM process 

parameters as open circuit voltage = 47-50 V, peak current = 10.5-11.5 A, pulse-on 

time = 190-200 µs, duty factor = 78-82%, flushing pressure = 0.15-0.25 bar, type of the 

tool = copper, polarity = positive and pulse-off time = 25-35 µs. It is worthwhile to 
mention here that among the considered responses, material removal rate is the sole 

beneficial attribute requiring its higher value, whereas, lower values for the remaining 

non-beneficial responses are preferred. Based on the past experimental data on EDM 

processes (Ray, 2016; Datta et al., 2017), all the related response values are classified 

into three groups, i.e. low, medium and high so as to relieve the end user in providing 

an exact value for a specific response which may sometimes be a difficult task. 

According to the end product requirements, the end user can now be able to opt for 

only low, medium or high value for a particular response of interest. The derived 

parametric settings of the considered EDM process are only tentative. In order to 

achieve most accurate target values of the responses, fine-tuning of those parameters 

may often be needed.  
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Figure 4. Prediction of responses based on EDM process parameters 

 

Figure 5. Prediction of EDM process parameters based on the responses 

In Figure 6, when the end user opts for performing deep through cutting operation (depth of cut > 40 µm) on ceramic materials using the EDM process, an error message 
would appear indicating the incapability of EDM process to generate the chosen shape 

feature on ceramics. It can be interestingly noticed that with increasing values of all 

the EDM process parameters, MRR would also increase. Higher values of gap voltage, 

peak current and pulse-on time are all responsible for the available discharge energy 

to increase, resulting in more melting and vaporization of material from the 

workpiece. The impulsive force in the spark gap also increases, which is responsible 

for higher MRR (Gopalakannan et. al., 2012). Increments in gap voltage and peak 

current generate stronger discharge energy, creating higher temperature and 

formation of larger craters on the machined surface, resulting in poor surface quality 

(Kiyak & Çakır, 2007) Similarly, TWR increases with higher values of gap voltage, peak 

current and cycle time. At these higher parametric settings, there are micro tool wears 
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due to availability of higher spark energy density at the machining zone. Generally, 

lower settings of these EDM process parameters tend to enhance the possibility of 

carbon deposition on the tool surface, which finally helps in lowering TWR value (Lin 

& Lee., 2008). The PE in the machined components occurs due to non-uniform 

undercut and OC which can be effectively controlled by proper settings of different 

EDM process parameters. With increasing values of gap voltage and peak current, PE 

shows an increasing trend. At higher gap voltage and peak current, there are 

occurrences of secondary spark discharges caused by poor flushing as well as sporadic 

machining which are responsible for inferior PE. During EDM operation, OC occurs due 

to side erosion and removal of debris. At higher settings of voltage, peak current and 

pulse-on time, availability of higher gap voltage and gap width allows breakdown of 

the dielectric at a wider gap due to higher electric field. At higher gap voltage and peak 

current, spark energy density would be more with a faster machining rate, which is 

also responsible for higher OC. Hence, the predicted parametric intermix for the EDM 

process would minimize the OC of the machined components. The above parametric 

setting can also be validated based on the observations of the past researchers (Ray, 

2016; Prasad & Chakraborty, 2018). 

 

 

Figure 6. An error message for EDM process 

4.2 Example 2: Ultrasonic machining 

Here, the end user desires to generate standard holes with slenderness ratio of less 

than equal to 20 on Titanium (ASTM Grade I) work material while utilizing USM 

process. Figure 7 exhibits the input window for this example. In Figure 8, from a list of 

the available controllable parameters for the USM process, type of the abrasive 

material, abrasive grit size, amplitude of vibration, machining time, type of the tool 

material, power rating and slurry concentration are first shortlisted. On the other 

hand, conicity, MRR, SR, tool wear rate (TW) and micro-harness are opted as the 

important responses. Depending on the requirements, the entire lists for the available 

USM process parameters and responses can also be selected. The entire information 

related to these USM process parameters and responses are accumulated from (Kumar 

& Khamba, 2010; Kataria et al., 2017).  
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Figure 7. Input window for example 2 

Now, in Figure 8, when the ‘NEXT’ functional key is pressed, the developed decision 

model would seek for the values of the shortlisted USM process parameters in another 

window, as portrayed in Figure 9.  

 

Figure 8. Window for selection of USM process parameters and responses  

In this case, the end user chooses the values of different USM parameters as type 

of the abrasive material = Boron carbide, abrasive grit size = 280, amplitude of vibration = 25 µm, machining time = 8.70 min, type of the tool material = Tungsten 
carbide, power rating = 550 W and slurry concentration = 45%. The drop-down menu 

attached with each of the process parameters guides the user to opt for the most 

apposite value as available in a particular USM set-up.  
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Figure 9. Prediction of responses based on USM process parameters 

Based on these requirements, the developed system predicts the responses as 

conicity = 0.023-0.038º, SR = 0.78-0.85 µm, MRR = 0.025-0.035 mm3/min, TW = 0.98-

1.05 mm3/min and micro-hardness = 155-160 HV. Now, when the ‘RESPONSE TO PP’ 
functional key is pressed in Figure 8, this system would jump to a new window, as 

shown in Figure 10, where the end user is asked to input the desired values of the 

preselected responses in order to guide him/her about the tentative settings of 

different USM process parameters.  

 

Figure 10. Prediction of USM process parameters based on the responses 

Here, high value of MRR (0.066-0.870mm3/min), and low values for conicity 

(0.014-0.032º), out-of-roundness (0.200-0.285 mm), SR (0.48-0.87 µm) and hole 
oversize (0.075-0.265mm) are sought by the end user. Depending on these 

requirements, it advises the user to set the corresponding USM parameters as type of 
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the abrasive material = Silicon carbide, abrasive grit size = 400, type of the tool 

material = HSS, power rating = 400-450 W, slurry concentration = 35-37%, slurry flow 

rate = 6.5-7.5 l/min and feed rate = 1.12-1.28 mm/min. In order to achieve more 

accurate machining performance, fine-tuning of the settings of the considered USM 

process parameters may often be required. When the end user chooses the same USM 

process for generation of precision holes (D ≤ 0.25 mm) to be machined on Aluminium 
work material, an error message, as shown in Figure 11, would automatically be 

generated by the system indicating the fact that it cannot machine precision holes on 

Aluminium material.  

 

Figure 11. A typical error message for USM process 

In USM process, when the amplitude of vibration increases, energy at the tool tip 

also increases, resulting in higher SR due to increased impact of the abrasive particles 

on the workpiece. Furthermore, TW also increases due to increase in the slurry flow 

rate containing harder abrasive particles, which are bombarded on the tool tip. The 

cavitation effects also lead to an increase in TW. With increase in amplitude of 

vibration, there is an increment in MRR as higher amplitude attributes to higher 

momentum imparted to the abrasive particles before striking the workpiece. It raises 

the energy with which the abrasive particles collide on the work surface and hence, 

the micro-crack or micro-crater created by each impact facilitates the material 

removal process. On the other hand, MRR decreases because the successive impacts 

between the abrasive grains and the work material may lead to large amount of plastic 

deformation resulting in the formation of a work-hardened layer, causing reduction in 

MRR (Bhosale et al., 2014). An increment in slurry concentration is responsible for 

more impact on the work surface leading to higher SR. This also causes an increase in 

TW since more abrasive particles come into contact with the tool over a given period 

of time. However, the material removal tendency decreases because of the loss of 

energy possessed by the abrasives in the slurry. As the number of particles between 

the tool and the work surface increases due to higher slurry concentration, loss of 

energy due to interparticle collision may prevail during this phenomenon (Kataria et 

al., 2017; Chakraborty et al., 2020). 

4.3 Example 3: Plasma arc machining In this example, deep through cutting operation with depth of cut > 40 µm needs 
to be performed on a workpiece made of stainless steel using PAM process. In order 

to satisfy these requirements, the corresponding NTM process, work material, shape 

feature and sub-shape feature are accordingly selected in Figure 12.  
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Figure 12. Input window for example 3 

For the PAM process, based on an extensive survey of the existing literature (Xu et 

al., 2002; Das et al., 2014; Adalarasan et al., 2015; Ramakrishnan et al., 2018), arc 

voltage, cutting current, cutting speed, feed rate, torch stand-off distance, plasma gas 

pressure and pierce height are identified as the predominant control parameters 

influencing its machining performance. On the other hand, the important responses 

are shortlisted as conicity, chamfer, dross, heat affected zone (HAZ), kerf width, MRR 

and SR. Now, in Figure 13, the end user preselects arc voltage, cutting current, feed 

rate and torch stand-off distance as the available PAM process parameters, and 

chamfer, dross, kerf width and SR as the desired responses.  

 

Figure 13. Window for selection of PAM process parameters and 

responses 

The values of these four shortlisted PAM process parameters are set as arc voltage 

= 120 V, cutting current = 42.5 A, feed rate = 945 mm/min and torch stand-off distance 

= 2.5 mm, as exhibited in Figure 14. Based on this parametric combination, the 

developed decision model predicts the shortlisted responses as chamfer = 1.80-1.85 

mm, dross = 3.60-3.64 mm2, kerf width = 2.70-2.75 mm and SR = 0.76-0.85 µm. Thus, 



 Chakraborty and Kumar/Decis. Mak. Appl. Manag. Eng. 4 (1) (2021) 194-214 

208 

this system would help the process engineers to have an idea about the achievable 

values of different responses based on a preselected set of parametric combinations.  

 

 

Figure 14. Prediction of responses based on PAM process parameters In Figure 13, if the end user presses the ‘RESPONSE TO PP’ functional key, a new 

input window, as shown in Figure 15, would now be available where the ranges of 

values for different responses can be set according to the end product requirements. 

In this example, the end user opts for high value of MRR (2.06-2.80 mm3/min), and 

low values for conicity (0.009-0.021º), HAZ (325-400 µm), chamfer (1.00-1.32 mm), 

dross (0.45-3.49 mm2), kerf width (1.93-2.53 mm) and SR (0.724-0.875 µm). Now, 

based on these response requirements, the developed system would advise the 

process engineer to set different parameters of the PAM process as feed rate = 930-

950 mm/min, cutting speed = 2260-2280 mm/min, plasma gas pressure = 4.57-4.92 

kg/cm2, arc voltage = 115-125 V and torch stand-off distance = 2.5-4.5 mm. These are 

only the tentative settings of the considered PAM setup. The process engineer may 

require to fine-tune these settings in order to achieve more accurate results. 
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Figure 15. Prediction of PAM process parameters based on the responses 

As shown in Figure 16, when the end user wants to machine precision holes on 

refractories using the available PAM process, the system would automatically 

generate an error message highlighting its inability to machine the specified work 

material.  

 

Figure 16. An error message for PAM process 

In PAM process, torch stand-off distance has the strongest effect on the quality 

characteristics. Stand-off distance is one of the crucial parameters in PAM process as 

it controls SR and conicity of the cut edge. It has also been observed that cutting 

current also influences the HAZ of the cut edge. It greatly influences SR of the cut due 

to the fact that the plasma gas beam is not of cylindrical shape but resembles the shape 

of a reversed candle flame.  Therefore, depending on the relative position of the plasma 

to the workpiece surface, the surface quality is drastically affected due to thermal 

properties of the material (Salonitis & Vatousianos, 2012). The MRR increases with an 

increase in gas pressure and high gas flow because it leads to an increase in mean arc 

voltage and its fluctuations as more heat is transferred into the workpiece, and 
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consequently, SR reduces. However, MRR remains constant with an increase in stand-

off distance as there is a slight fluctuation in energy. For higher plasma gas flow rate, 

arc voltage also becomes higher. As the gas flow rate increases, more energy is needed 

to ionize the gas, therefore the arc voltage should be higher. The kerf is narrower at 

the top, it widens at the middle, and again becomes narrower at the bottom, making 

heat distribution along the cut to be irregular. During PAM operation, dross formation 

at the bottom of the workpiece needs to be minimized while controlling the 

corresponding process parameters. At low speed, input energy to the workpiece is 

high, causing melting of more materials. Dross is formed when adequate force of the 

plasma jet is not available. To obtain a dross-free cut surface, plasma force and energy 

input to the workpiece need to be balanced properly. Plasma power increases with 

plasma gas flow rate and arc current. To achieve a square cut of narrow kerf with 

minimal dross, the decision model can efficiently predict the tentative ranges of the 

process parameters (Mittal & Mahajan, 2018). The same parametric combination for 

the PAM process is also well derived by the past researchers (Ramakrishnan et al., 

2018; Prasad & Chakraborty, 2018; Chakraborty et al., 2020). 

5. Conclusions   

In this paper, an attempt is made to design and develop an intelligent decision 

model in VBASIC so as to help the concerned process engineers in the domain of NTM 

processes. Based on the availability of a particular NTM process, and selected 

workpiece and shape feature combination, it can identify values of different responses 

for a given set of parametric combinations. On the other hand, it has also the capability 

of predicting the tentative settings of different NTM process parameters while meeting 

the specified values of a given set of responses. In this system, the decision making 

procedure is based on an exhaustive set of IF-THEN rules, and it consists of all the 

possible combinations of different NTM processes, work materials and shape features. 

It is easy to operate as the graphical user interface continuously interacts with the end 

users restricting them to commit any error. It has also the flexibility to cater any 

combination of NTM process, work material and shape feature. It warns the end user 

when a particular machining operation cannot be performed by a specific NTM 

process. The developed decision model assists the process engineers and designers to 

efficiently identify the technically feasible NTM processes in the early design and 

machining stages, enabling in developing the required product functionalities and 

appearance with the feasible processes in mind, while utilizing the process 

characteristics more effectively. After the detailed design is complete, the feasible 

processes identified in the earlier steps can be reevaluated, reassessing their technical 

feasibilities for manufacturing the designed product. The design can also be modified 

accordingly, if needed, to ensure manufacturability of the product. The main 

advantage of this decision model is that it does not require any in-depth technical 

knowledge regarding the applicability of the NTM processes. It also acts as an expert 

system to ease out and automate the NTM process selection procedure. 

This decision model has also some limitations. Firstly, it does not take into account 

the presently available hybrid machining and additive manufacturing processes.  

Moreover, it is developed based on a static database. It would be worth investigating 

the possibility of integrating the decision model into the ‘cloud’ under the Industry 4.0 

context, allowing prompt feedback and rapid update. It is also assumed that the 

developed decision model has no maintenance and operation costs. It lacks the 

creative responses of the human experts, and is also not able to explain the logic and 
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reasoning behind a decision to the end user. It opens opportunities to include 

micromachining, hybrid machining and additive manufacturing technology selection 

modules as well as improving selection results while incorporating more selection 

criteria and work materials in the model. It is expected that the developed model 

would be well accepted by the manufacturing industries for arriving at the prompt 

NTM process selection decisions. It can also be implemented in a group decision 

making environment involving opinions of different process engineers having varying 

background knowledge and expertise for more pragmatic results. Its capability, reach 

and usability may further be enhanced while making it entirely web-based to become 

accessible to its end users through an internet network.  
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