Decision Making: Applications in Management and Engineering
Vol. 4, Issue 1, 2021, pp. 194-214.

ISSN: 2560-6018

eISSN: 2620-0104

éros®t DOI: https://doi.org/10.31181/dmame2104194c

DEVELOPMENT OF AN INTELLIGENT DECISION MODEL
FOR NON-TRADITIONAL MACHINING PROCESSES

Shankar Chakraborty 1* and Vidyapati Kumar 1!

1Department of Production Engineering, Jadavpur University, Kolkata, India, 700032

Received: 10 January 2021;
Accepted: 7 March 2021;
Available online: 13 March 2021.

Original scientific paper
Abstract. In order to fulfil the ever increasing requirements of various hard
and difficult-to-machine materials in automobile, turbine, nuclear, aviation,
tool and die making industries, the conventional material removal processes
are now being continuously substituted by an array of non-traditional
machining (NTM) processes. The efficient and improved capabilities of these
NTM processes have made them indispensible for the present day
manufacturing industries. While deploying a particular NTM process for a
specific machining application, the concerned process engineer must be aware
of its capability which is influenced by a large number of controllable
parameters. In this paper, an intelligent decision model is designed and
developed in VBASIC to guide the concerned process engineer to have an idea
about the values of various NTM process responses for a given parametric
combination. It would also advise about the tentative settings of different NTM
process parameters for achieving a set of target response values. It would thus
aim in assisting the process engineers and designers to efficiently identify the
technically feasible NTM processes in the early design and machining stages,
focusing more on developing the required product functionalities and
appearance with the feasible processes in mind, utilizing the process
characteristics more effectively. The operational procedure of this developed
decision model is demonstrated with the help of three real time examples.

Key words: Non-traditional machining process; Parameter; Response;
Decision model; VBASIC.

1. Introduction

The emerging need for generating intricate and precise shape features in various
advanced engineering materials, like high-strength-temperature-resistant alloys,
tungsten carbide, titanium and its alloys, ceramics, fibre-reinforced composites,

* Corresponding author.
E-mail addresses: s_chakraborty00@yahoo.co.in (S. Chakraborty),

crewvidyapati@gmail.com (V. Kumar).



mailto:s_chakraborty00@yahoo.co.in
mailto:crewvidyapati@gmail.com
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stainless steel, refractories etc. has resulted in development of a group of new
machining processes, collectively known as non-traditional machining (NTM)
processes. These advanced materials, having higher strength, toughness, hardness,
low machinability and other varied properties, are in demand in various
manufacturing industries, like automobile, nuclear, aviation, missile, tool and die
making etc. In conventional machining processes, material removal usually takes place
in the form of chips while applying forces on the workpiece using a wedge-shaped
cutting tool which is harder than the work material. These processes usually incur
higher cost with respect to tool wear and poor quality due to the generation of residual
stresses in work material. They are also incapable to attain the dimensional accuracy
and surface finish as desired by the modern day manufacturing industries. In these
processes, as the relative motion between the tool and workpiece is typically rotary or
reciprocating, the generated shape is thus restricted to only circular or flat features,
and except in computer-numerical control (CNC) tools, machining of three-
dimensional surfaces is extremely difficult. Thus, in order to cater the needs of higher
dimensional accuracy (in micro- or nano-level), surface finish, capability to machine
difficult-to-cut materials with high strength-to-weight ratio, low surface damage,
minimum tolerance, automated data transmission and miniaturization, the
conventional machining processes are now being gradually replaced by the NTM
processes (Jain, 1980; Pandey & Shan, 1980; El-Hofy, 2005). In NTM processes, instead
of sharp cutting tools, energy in its direct form is employed to remove material from
the workpiece surface. These processes usually adopt mechanical, thermal, electrical
and chemical energies or any combination of them for removing materials in the shape
of micro-chips or atoms to achieve the desired accuracy and machined surface without
any burr. In these processes, there is also no physical contact between the tool and
workpiece, and the related material removal mechanism is not dependant on the
mechanical properties of the work materials. Some of the NTM processes can also
machine workpieces in areas inaccessible for the conventional machining techniques.
Thus, these enhanced and efficient capabilities of NTM processes have made them
almost indispensible and popular at the shop floor (Rajurkar et al., 2017). Over the
years, more than 20 different NTM processes have been successfully developed and
deployed to meet the diverse needs of the present day manufacturing industries. In
order to make efficient use of the NTM processes, it thus becomes necessary to
understand the exact nature of the machining problem. They can never replace the
conventional machining processes, and a particular NTM process may be highly
acceptable for a given set of requirements, but it may sometimes fail to prove its
acceptability under different machining conditions. Thus, an extensive knowledge
regarding the capabilities of various NTM processes is crucial in order to select the
most suitable NTM process to generate the desired shape feature on a given work
material. Existence of a large number of NTM processes with diverse uniqueness and
capabilities has compelled the process engineers to develop structured approaches for
NTM process selection for assorted machining applications. In this direction,
development of a decision making framework in the form of an intelligent knowledge-
based system is worth demanding. The developed intelligent decision model would
help the process engineers in multi-directional ways, like (a) selecting the most
suitable NTM process for a given problem, (b) managing a huge volume of machining
data and responding quickly, (c) standardizing the conclusions drawn from a given
data set, and (d) capturing the scarce expertise and making it available for subsequent
use.

The remainder of the paper is organized as follows. Section 2 presents the
applications of different methodologies adopted by the past researchers for NTM
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processes selection. Section 3 describes the developmental framework of the decision
model. Section 4 presents three examples to demonstrate the applicability and
usefulness of the developed model. Finally, Section 5 concludes the paper, highlighting
its assumptions, limitations and future directions.

2. Literature review

Yurdakul & C¢cogun (2003) proposed an NTM process selection method for a given
application requirement while combining analytic hierarchy process (AHP) and
technique for order of preference by similarity to the ideal solution (TOPSIS). The
alternative NTM processes were first narrowed down to a set of feasible solutions
which were subsequently ranked based on their suitability for the desired application.
Chakraborty & Dey (2006) developed an AHP method-based expert system with a
graphical user interface to find out the most apposite NTM process with the highest
acceptability index value. Chakraborty & Dey (2007) applied quality function
deployment (QFD) methodology for identification of the most suitable NTM process
for a given industrial application based on the development of a house of quality
matrix for comparing the considered product and process characteristics. Chakladar
& Chakraborty (2008) integrated AHP and TOPSIS methods in order to select the most
appropriate NTM process for a specific work material and shape feature combination.
Chandraseelan et al. (2008) developed a web-based knowledge base system for
identification of the most suitable NTM process based on some input parameters and
process capability requirements. Chakladar et al. (2009) proposed a digraph-based
approach to entirely automate the NTM process selection procedure. Based on the
capabilities of the considered NTM processes to generate a desired shape on a given
material, they were subsequently ranked in decreasing order of preference.
Sugumaran et al. (2010) presented a neural network-based approach to help the
process engineers in preparing a list of feasible NTM processes for a specific
machining operation on a given work material. Karande & Chakraborty (2012) solved
four real time NTM process selection problems while applying an integrated
PROMETHEE (preference ranking organization method for enrichment evaluation)
and GAIA (geometrical analysis for interactive aid) approach. Temugin et al. (2013)
employed both fuzzy and crisp-based approaches to solve NTM process selection
problems, and developed a decision support model to assist the process engineers to
arrive at the correct NTM process selection decision. Roy et al. (2014) first applied
fuzzy AHP method for estimating the relative importance of various NTM processes
based on several product and process characteristics, and later adopted QFD
methodology for evaluating the performance scores of various NTM processes to
choose the best one. Sarkar et al. (2015) proposed a multi-objective optimization on
the basis of ratio analysis (MOORA) method-based decision support system for
selection of NTM processes having a given set of quantitative and qualitative selection
attributes. Madi¢ et al. (2015b) combined AHP, MOORA and TOPSIS methods for
determination of the relative significance of various quality criteria, and hence,
selection of the most suitable NTM process for a given application. Based on a hybrid
multi-criteria decision making (MCDM) framework, Azaryoon et al. (2015) developed
a knowledge-based system for identification of NTM processes. The developed
approach employed the combined applications of decision making trial and evaluation
laboratory (DEMATEL), analytic network process (ANP) and VIKOR
(VIsekriterijumsko KOmpromisno Rangiranje) methods to evaluate various
performance measures, such as applicability of workpiece material and shape
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features, process capabilities, and cost-related factors. Madi¢ et al. (2015a) applied
operational competitiveness rating analysis (OCRA) method as an MCDM tool for
selection of the NTM processes from a large number of candidate alternatives. Saenz
etal. (2015) proposed a novel method for selection and comparison of non-traditional
sheet metal cutting processes. Khandekar & Chakraborty (2016) applied fuzzy
axiomatic design principles for selection of the most appropriate NTM processes for
generating cavities on ceramics, and micro-holes on hardened tool steel and titanium
materials. Chatterjee et al. (2017) presented a novel hybrid approach consisting of
factor relationship (FARE) and multi-attributive border approximation area
comparison (MABAC) methods for selection and evaluation of NTM processes. The
FARE method was first applied to determine the corresponding criteria weights, and
the alternative NTM processes are later ranked using MABAC method. Roy et al.
(2017) proposed a combined application of fuzzy AHP and QFD methods for
investigating the relative significance of different technical requirements in an NTM
process selection approach, and also identified the suitability of electrochemical
machining process for a specified industrial application. Prasad & Chakraborty (2018)
developed a decision guidance framework to assist the process engineers in choosing
the most suitable NTM process for a given machining application and identifying the
ideal process parameter settings for the said process. Yurdakul et al. (2019) presented
intuitionistic and triangular fuzzy-based models for ranking of the suitable NTM
processes for machining of some specific shape features on the given work materials.
The performance of those models was later compared with that of crisp-based models.
Amalnik (2019) proposed a feature-based expert system for optimization of design of
an abrasive waterjet machining process. The corresponding database would consist of
lists of 20 work materials, eight abrasive types and four machine types. The developed
expert system would aid the process engineers while providing information with
respect to machining cycle time, machining cost and cutting rate. Rohith et al. (2019)
first adopted a data envelopment analysis (DEA)-based model for shorlisting the
efficient NTM processes for a given shape feature and work material combination, and
then employed AHP, TOPSIS and OCRA methods for ranking and selection of the
efficient NTM processes. Yurdakul & I¢ (2019) presented the applications of fuzzy-
based models of AHP and TOPSIS methods for NTM process selection for a particular
work material and shape feature combinations. Talib and Asjad (2019) developed a
model using AHP method for prioritizing as well as ranking of various NTM processes
based on 27 evaluation criteria. Chakraborty et al. (2020) integrated rough numbers
with MABAC method to identify the most feasible NTM processes for generation of
standard through holes in glass and deep through cavities in titanium work materials.
Based on firefly algorithm, Singh & Shukla (2020) developed a graphical user
interface for selecting the optimal input parameters for electrochemical machining,
electrochemical micro-machining and electrochemical turning processes.

From an extensive review of the existing literature, it has been observed that
varieties of expert systems have already been developed so as to help the process
engineers in identifying the most competent NTM processes for different work
material and shape feature combinations. Those developed expert systems have also
been integrated with several other mathematical techniques, like AHP, ANP, TOPSIS,
DEA, QFD etc. for arriving at the best courses of action. Those expert systems have
been so designed and developed that they could only identify the most apposite NTM
processes for varying machining applications. The expert system developed by Prasad
& Chakraborty (2018) could only advise the concerned process engineers about the
tentative parametric settings of the chosen NTM processes, apart from selecting the
most competent NTM processes to fulfil different application requirements.
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No research work has been carried out till date so as to predict the most probable
values of various responses based on a given combination of different NTM process
parameters or envisage the tentative settings of various NTM process parameters so
as to achieve the most desired values of the considered responses. In this paper, an
attempt is thus put forward so as to design and develop an intelligent decision model
in Visual BASIC (VBASIC) that would help the process engineers in advising about the
achievable values of different responses for a specific set of NTM process parameters
or selecting the optimal parametric mix in order to attain a set of target responses. The
developed system is supposed to be flexible and versatile enough as it encompasses
all the available NTM processes, work materials and shape features, and also user-
friendly and interactive as it always guides the end users in arriving at the optimal
selection decision.

3. Development of the Decision Model

The procedural steps in the form of a flowchart in order to run this developed
intelligent decision model without any error are exhibited in Figure 1.

[ Start of the selection process ]
v
| Select an NTM process l“.

I Choose a work material |

[ Choose a shape feature and sub-shape feature |

Press “OK” button
an machining NO
be done ?

| Select process parameters and responses according to the requirements |

Display an error
message

A 7 v
Press “NEXT” button for Press “RESPONSE TO PP” button
prediction of responses for prediction of process parameters

\ Select values of process parameters | Select target response values \

| Prediction of responses I | Prediction of process parameters |

I—-)[ End of the selection process

Figure 1. Flowchart exhibiting procedural steps of the developed decision
model

At first, it would ask the end user to select the type of the NTM operation to be
performed along with the combination of work material to be machined and
shape/sub-shape feature to be generated. Once the NTM operation is specified, two
lists containing the controllable parameters and responses associated with the
selected NTM process would now appear in the next screen of the developed system.
The end user would then be directed to preselect the machining parameters as
available in that NTM process along with the set of desired responses in order to fulfil
the end product requirements. The end user can also choose all the available NTM
198
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process parameters and responses while pressing the ‘SELECT ALL’ functional key. It
would then direct the end user to input the desired values of the identified NTM
process parameters based on which the tentative values of the selected responses
would be provided on pressing of the ‘OK’ button. Here, only the available values of
the selected process parameters for a particular NTM process would appear in the
screen in the form of drop-down menus. The reverse approach can also be augmented
in this decision model while selecting the ‘RESPONSE TO PP’ functional key. The end
user can also choose all the available NTM process parameters and responses while
pressing the ‘SELECT ALL’ functional key, and select the ‘/RESPONSE TO PP’ for having
the tentative values of the NTM process parameters. It would then direct the end user
to input the desired ranges of the identified NTM responses as beneficial and non-
beneficial criteria based on which the conditional values of the selected process
parameters would be provided on pressing the ‘OK’ button. Here, only the available
values of the selected responses for a particular NTM process would appear in the
screen in the form of drop-down menu. If the end user opts for generating infeasible
shape features or machining unsuitable materials using any of the considered NTM
processes, an error message would appear indicating the incapability of that NTM
process to generate the chosen shape feature on the given material. In this case, the
end user has to repeat the procedural steps of NTM process selection from the
beginning. In this paper, 17 NTM processes, i.e. (a) abrasive jet machining (AJM), (b)
abrasive water jet machining (AW]JM), (c) electron beam machining (EBM), (d)
electrochemical grinding (ECG), (e) electrochemical machining (ECM), (f)
electrochemical discharge machining (ECDM), (g) electro-discharge machining (EDM),
(h) electro jet drilling (EJD), (i) focused ion beam machining (FIB), (j) hot chlorine
machining (HM), (k) laser beam machining (LBM), (1) magnetorheological finishing
(MRF), (m) plasma arc machining (PAM), (n) photochemical milling (PCM), (o)
ultrasonic machining (USM), (p) wire electro-discharge machining (WEDM) and (q)
water jet machining (WJM) are considered for subsequent development of the
intelligent decision model. Similarly, the list of the considered work materials consists
of (a) Alumina, (b) Aluminium, (c) Boron carbide, (d) Ceramics, (e¢) Composites, (f)
Cemented tungsten carbide, (g) Duralumin, (h) Inorganic glass, (i) Inconel 718, (j)
Inconel 800, (k) Inconel 825, (1) Incoloy, (m) Monel 400, (n) Monel K-500, (o) Nickel,
(p) Nimonics, (q) Plastics, (r) Refractories, (s) Silicon nitride, (t) Silicon carbide, (u)
Steel, (v) Stainless steel, (w) Titanium (ASTM Grade I), (x) Tungsten carbide and (y)
Titanium-based super alloys. This system takes into consideration the following shape
and sub-shape features for subsequent generation on the selected work material:
(a) Holes

(i) Precision holes (D < 0.25 mm) (where D = diameter)

(ii) Precision holes (D > 0.25 mm)

(iii) Standard holes (L/D < 20) (where L/D =length/diameter = slenderness

ratio)

(iv) Standard holes (L/D > 20)
(b) Cavities

(i) Precision (aspect ratio < 5)

(ii) Standard
(c) Surfacing

(i) Double contouring

(ii) Surface of revolution
(d) Through cutting

(i) Shallow (depth of cut < 40 pm)

(ii) Deep (depth of cut > 40 pum)
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(e) Finishing.

The entire database containing the capabilities of all the considered NTM processes
with respect to workpiece material, and shape and sub-shape features to be generated
is stored in MS-ACCESS linked with VBASIC, and the decisions regarding values of
various responses and settings of the NTM process parameters are arrived at based
on sets of simple IF-THEN rules.

4. Illustrative examples

In order to demonstrate the applicability and usefulness of the developed decision
model in the domain of NTM processes, the following three examples are cited.

4.1 Example 1: Electro-discharge machining

In this example, it is supposed that precision cavities with aspect ratio < 5 need to
be generated on Inconel 718 alloy using EDM process. For this machining application,
the corresponding input window in the form of a graphical user interface is shown in
Figure 2.

3 Foem i e

! Select an NTM process Choose a work material Choose a shape feature Choose a sub-shape feature

Electro-discharge mackming (EDM) v |mcocet Ti8 ~| Canities B I P s spect zatic < S RS

E3

Figure 2. Input window for the first example

Pressing of the ‘OK’ functional key then leads the end user to the next window, as
exhibited in Figure 3, where the lists of all the important EDM process parameters, i.e.
peak current, open circuit voltage, pulse-on time, duty factor, flushing pressure, pulse-
off time, dielectric level, tool electrode lift time, polarity, type of the tool and flushing
speed, and responses, like surface crack density, tool wear ratio (TWR),
perpendicularity error (PE), material removal rate (MRR), surface roughness (SR),
overcut (0C), electrode wear rate, edge deviation, white layer thickness and micro-
harness are displayed. In this example, at first, the end user selects peak current, open
circuit voltage, pulse-on time, duty factor, polarity and type of the tool as the
controllable process parameters as available in the considered EDM set-up. On the
other hand, based on the end product requirements, surface crack density, TWR, PE,
MRR, SR and micro-hardness are treated with utmost importance. The end user can
also choose all the EDM process parameters and responses while pressing the ‘SELECT
ALL’ key. Now, when the ‘NEXT’ button is pressed, in the subsequent window, as
depicted in Figure 4, the end user is opted to enter the appropriate values for the
preselected EDM process parameters based on which the approximate values of the
shortlisted responses would be predicted. In this example, the end user chooses the
options as peak current = 9 A, open circuit voltage = 60V, pulse-on time = 100 ps, duty
factor = 70%, polarity = positive and tool material = copper. Now, when the ‘OK’
button is pressed, this decision model would guide the end user to have an idea about
various responses envisaged as surface crack density = 0.0055-0.0057 pm/pum?2, MRR
=89.12-89.18 mm3/min, SR = 6.2-6.7 pm, PE = 0.09-1.11%, micro-hardness = 392.40-
392.50 HV and TWR = 0.0012-0.0016.
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ra Forml | =RNCY ﬁ’

Selected process EDM

Select process parameters Select responses

i Eenk cumee (1) [v Surface crack density (um/sq. pm)

v T o
[v Perpendicularity error (%)

[v Open circuit voltage (V)
[v Pulse on time (us)

[v Duty factor (%)

[ Flushing pressure (Bar)
[ Pulse off time (us)

[V Material removal rate (cu.mm/min)

[v Surface roughness (Ra) (um)

[~ Overcut (mm)
[~ Dielectric level (mm)

[ Tool electrode lift time (s)

[T Electrode wear rate (cu.mm/min)
[~ Edge deviation (mm)
)il ety [~ White layer thickness (um)

v Micro - hardness (HV)

SELECTALL

NEXT RESPONSE TO PP |

[v Type of tool
[~ Flushing speed (m/sec)

SELECTALL

Figure 3. Window for selection of EDM process parameters and responses

In Figure 3, when the end user presses the ‘RESPONSE TO PP’ functional key, the
settings of the preselected EDM process parameters can be predicted based on the
chosen values of the shortlisted EDM responses. As exhibited in Figure 5, the end user
desires to have high value of MRR (59.881-89.164 mm3/min), and low values of
electrode wear rate (0.011-0.059 mm3/min), SR (2.133-4.866 pm), OC (0.03-0.19
mm), surface crack density (0.008-0.011 pm/um?), white layer thickness (16.646-
17.866 pum) and micro-hardness (352.600-407.755 HV). Based on these input
response values, the developed decision model predicts the related EDM process
parameters as open circuit voltage = 47-50 V, peak current = 10.5-11.5 A, pulse-on
time = 190-200 ps, duty factor = 78-82%, flushing pressure = 0.15-0.25 bar, type of the
tool = copper, polarity = positive and pulse-off time = 25-35 ps. It is worthwhile to
mention here that among the considered responses, material removal rate is the sole
beneficial attribute requiring its higher value, whereas, lower values for the remaining
non-beneficial responses are preferred. Based on the past experimental data on EDM
processes (Ray, 2016; Datta et al., 2017), all the related response values are classified
into three groups, i.e. low, medium and high so as to relieve the end user in providing
an exact value for a specific response which may sometimes be a difficult task.
According to the end product requirements, the end user can now be able to opt for
only low, medium or high value for a particular response of interest. The derived
parametric settings of the considered EDM process are only tentative. In order to
achieve most accurate target values of the responses, fine-tuning of those parameters
may often be needed.
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5 Form3 =

Responses Process parameters

Material removal rate (cu. mmmm)l High (59.881 - 89.164) J Open circuit voltage (V) 47-50
Electrode wear rate (cu.mm/min) l Low (0.011 - 0.059) J Peak current (A) 10.5-115
Surface roughness (Ra) (jm) | Low (2.133 - 4.866) _J Pulse on time (us) 190 -210
Overcut (mm) | Low (0.03 - 0.19) _] Duty factor (%) 78-82
Surface crack density (um/sq. pm)| Low (0.008 - 0.011) - Flushing pressure (Bar) 01502
White layer thickness (m) | Low (16.646 - 17.866)  ~| Type of tool Copper
Micro - hardness (HV) | Low (352.600 - 407.755) ~| Polarity Poeitive
Pulse off time (ps) 25-35

Figure 4. Prediction of responses based on EDM process parameters

3. Form3 [E=E

Responses Process parameters

Material removal rate (cu.mm-“min)l High (59.881 - 89.164) L] Open circuit voltage (V) 47-50
Electrode wear rate (cu.mm/min) | Low (0.011 - 0.059) -.J Peak current (A) 10.5-11.5
Surface roughness (Ra) (um) | Low (2.133 - 4.866) j Pulse on time (us) 190 -210
Overcut (mm) [Low (0.03 - 0.19) - Dauty factor (%) 78-82
Surface crack density (um/sq. pm)| Lo (0.008 - 0.011) - Flushing pressure (Bar) 035025
White layer thickness (um) | Low (16.646 - 17.866)  ~| Type of tool Copper
Micro - hardness (HV) | Low (352.600 - 407.755) j Polarity Positive
Pulse off time (us) 25-35

Figure 5. Prediction of EDM process parameters based on the responses

In Figure 6, when the end user opts for performing deep through cutting operation
(depth of cut > 40 pm) on ceramic materials using the EDM process, an error message
would appear indicating the incapability of EDM process to generate the chosen shape
feature on ceramics. It can be interestingly noticed that with increasing values of all
the EDM process parameters, MRR would also increase. Higher values of gap voltage,
peak current and pulse-on time are all responsible for the available discharge energy
to increase, resulting in more melting and vaporization of material from the
workpiece. The impulsive force in the spark gap also increases, which is responsible
for higher MRR (Gopalakannan et. al., 2012). Increments in gap voltage and peak
current generate stronger discharge energy, creating higher temperature and
formation of larger craters on the machined surface, resulting in poor surface quality
(Kiyak & Cakir, 2007) Similarly, TWR increases with higher values of gap voltage, peak
current and cycle time. At these higher parametric settings, there are micro tool wears
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due to availability of higher spark energy density at the machining zone. Generally,
lower settings of these EDM process parameters tend to enhance the possibility of
carbon deposition on the tool surface, which finally helps in lowering TWR value (Lin
& Lee.,, 2008). The PE in the machined components occurs due to non-uniform
undercut and OC which can be effectively controlled by proper settings of different
EDM process parameters. With increasing values of gap voltage and peak current, PE
shows an increasing trend. At higher gap voltage and peak current, there are
occurrences of secondary spark discharges caused by poor flushing as well as sporadic
machining which are responsible for inferior PE. During EDM operation, OC occurs due
to side erosion and removal of debris. At higher settings of voltage, peak current and
pulse-on time, availability of higher gap voltage and gap width allows breakdown of
the dielectric at a wider gap due to higher electric field. At higher gap voltage and peak
current, spark energy density would be more with a faster machining rate, which is
also responsible for higher OC. Hence, the predicted parametric intermix for the EDM
process would minimize the OC of the machined components. The above parametric
setting can also be validated based on the observations of the past researchers (Ray,
2016; Prasad & Chakraborty, 2018).

r3 Formi =18

Select an NTM process Choose a work material Choose a shape feature  Choose a sub-shape feature
Electio-dischage mackining (EDM) - Ceramics - | Tiwough cuting | [ Deep fdepth of cut > 40 ym)  ~|
,‘?
ERAOR | ——

Cerarnics matenal snd dee through cutting festuse cennol be
machinad by electro-discharge machining [EDI) precess

[

Figure 6. An error message for EDM process

4.2 Example 2: Ultrasonic machining

Here, the end user desires to generate standard holes with slenderness ratio of less
than equal to 20 on Titanium (ASTM Grade I) work material while utilizing USM
process. Figure 7 exhibits the input window for this example. In Figure 8, from a list of
the available controllable parameters for the USM process, type of the abrasive
material, abrasive grit size, amplitude of vibration, machining time, type of the tool
material, power rating and slurry concentration are first shortlisted. On the other
hand, conicity, MRR, SR, tool wear rate (TW) and micro-harness are opted as the
important responses. Depending on the requirements, the entire lists for the available
USM process parameters and responses can also be selected. The entire information
related to these USM process parameters and responses are accumulated from (Kumar
& Khamba, 2010; Kataria et al,, 2017).
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13 Torml o )

Select an NTM process Choose a work material Choose a shape feature Choose a sub shape feature

Uhraconic machining (USM) <l [ Coamics =] | Holes o] [Stmdwdholes @D <20y

Figure 7. Input window for example 2

Now, in Figure 8, when the ‘NEXT’ functional key is pressed, the developed decision
model would seek for the values of the shortlisted USM process parameters in another
window, as portrayed in Figure 9.

& Formi E=E)

Selected process USM

Select process parameters Select responses

[v Abrasive material ¥ Conicity ()

[v Abrasive grit size (sieve number) [ Micteqtal reimiowal afs (g mic)
[~ Out-of-roundness (mm)
[v Surface roughness (Ra) (um)

[v Tool wear rate (cu.mm/min)

[v Amplitude of vibration (um)

[~ Depth of cut (mm)

[~ Frequency of ultrasonic vibration (kHz)
[~ Feed rate (mm/min)

[v Machining time (min)

[~ Exit butr area (sq. mm)
[~ Hole oversize (mm)

[v Type of tool material 7 Micro handness (V)
[v Power rating (W)

[v Sturry concentration (%)

[~ Sharry flow rate (U'min) ST
[~ Sturry temperature (°C)

[~ Sturry type

SELECTALL

RESPONSE TO PP I

Figure 8. Window for selection of USM process parameters and responses

In this case, the end user chooses the values of different USM parameters as type
of the abrasive material = Boron carbide, abrasive grit size = 280, amplitude of
vibration = 25 pm, machining time = 8.70 min, type of the tool material = Tungsten
carbide, power rating = 550 W and slurry concentration = 45%. The drop-down menu
attached with each of the process parameters guides the user to opt for the most
apposite value as available in a particular USM set-up.
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By Form2

Process parameters

Abrasive material
Abrasive grit size (sieve number)
Amplitude of vibration (um)
Machining time (min)
Type of tool material
Power rating (W)

Sharry concentration (%)

Boron carbide -

280 -
25 -
8.70 -
550 v
45 v

E=E—==)
Responses
Conicity (°) 0.023-0.038
Surface roughness (Ra) (um) 0.78 - 0.85
Material removal rate (g/min) 0.025 - 0.035

Tool wear rate (cu.mm/min) 0.98 - 1.05

Microhardness (HV) 155 - 160

Figure 9. Prediction of responses based on USM process parameters

Based on these requirements, the developed system predicts the responses as
conicity = 0.023-0.0382, SR = 0.78-0.85 pm, MRR = 0.025-0.035 mm3/min, TW = 0.98-
1.05 mm3/min and micro-hardness = 155-160 HV. Now, when the ‘RESPONSE TO PP’
functional key is pressed in Figure 8, this system would jump to a new window, as
shown in Figure 10, where the end user is asked to input the desired values of the
preselected responses in order to guide him/her about the tentative settings of
different USM process parameters.

& Form3 [E=REER)
Responses Process parameters
Material removal rate (g/min) | High (0.066 - 0.87) Z Abrasive material Silicon carbide

Conicity (°) Low (0.014 - 0.032) = Abrasive grit size (sieve number) 400

Out-of-roundness (mm) Low (0.2 - 0.285) v Type of tool material HSS

Surface roughness (pm) Low (0.48 - 0.87) Z Power rating (W) 400-450

Hole oversize (mm) Low (0.075 - 0.265) Z Sharry concentration (%) 35-37
Shrry flow rate (I/min) 65-7.5

Feed rate (mm/min)

Figure 10. Prediction of USM process parameters based on the responses

Here, high value of MRR (0.066-0.870mm3/min), and low values for conicity
(0.014-0.0329), out-of-roundness (0.200-0.285 mm), SR (0.48-0.87 um) and hole
oversize (0.075-0.265mm) are sought by the end user. Depending on these
requirements, it advises the user to set the corresponding USM parameters as type of
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the abrasive material = Silicon carbide, abrasive grit size = 400, type of the tool
material = HSS, power rating = 400-450 W, slurry concentration = 35-37%, slurry flow
rate = 6.5-7.5 1/min and feed rate = 1.12-1.28 mm/min. In order to achieve more
accurate machining performance, fine-tuning of the settings of the considered USM
process parameters may often be required. When the end user chooses the same USM
process for generation of precision holes (D < 0.25 mm) to be machined on Aluminium
work material, an error message, as shown in Figure 11, would automatically be
generated by the system indicating the fact that it cannot machine precision holes on
Aluminium material.

{l‘:.r‘:mu ol F
[ —

Select an NTM process Choose a work material Choose a shape feature Choose a sub-shape feature

[ Utrasonic machining (USM) | | Atminivem o] [THoles «| [Precision holes (D < 0.25mm)  +|
\
OK.
)
ERROR =%

Aluminium matedal and pracison heles (D < 0.25mm) feature cannot
be machined by ultraseaic mazhining (USM] process.

Figure 11. A typical error message for USM process

In USM process, when the amplitude of vibration increases, energy at the tool tip
also increases, resulting in higher SR due to increased impact of the abrasive particles
on the workpiece. Furthermore, TW also increases due to increase in the slurry flow
rate containing harder abrasive particles, which are bombarded on the tool tip. The
cavitation effects also lead to an increase in TW. With increase in amplitude of
vibration, there is an increment in MRR as higher amplitude attributes to higher
momentum imparted to the abrasive particles before striking the workpiece. It raises
the energy with which the abrasive particles collide on the work surface and hence,
the micro-crack or micro-crater created by each impact facilitates the material
removal process. On the other hand, MRR decreases because the successive impacts
between the abrasive grains and the work material may lead to large amount of plastic
deformation resulting in the formation of a work-hardened layer, causing reduction in
MRR (Bhosale et al,, 2014). An increment in slurry concentration is responsible for
more impact on the work surface leading to higher SR. This also causes an increase in
TW since more abrasive particles come into contact with the tool over a given period
of time. However, the material removal tendency decreases because of the loss of
energy possessed by the abrasives in the slurry. As the number of particles between
the tool and the work surface increases due to higher slurry concentration, loss of
energy due to interparticle collision may prevail during this phenomenon (Kataria et
al,, 2017; Chakraborty et al., 2020).

4.3 Example 3: Plasma arc machining

In this example, deep through cutting operation with depth of cut > 40 um needs
to be performed on a workpiece made of stainless steel using PAM process. In order
to satisfy these requirements, the corresponding NTM process, work material, shape
feature and sub-shape feature are accordingly selected in Figure 12.
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15 Formi (2[5 -

Seleet an NTM process Choose 1 work material Choose a shape feature  Choose a sub-shape feature

Plasma arc machireng (PAM) :] I Stanless steel 7-»' ! Through cutting ,'J

oK

Figure 12. Input window for example 3

For the PAM process, based on an extensive survey of the existing literature (Xu et
al., 2002; Das et al., 2014; Adalarasan et al.,, 2015; Ramakrishnan et al., 2018), arc
voltage, cutting current, cutting speed, feed rate, torch stand-off distance, plasma gas
pressure and pierce height are identified as the predominant control parameters
influencing its machining performance. On the other hand, the important responses
are shortlisted as conicity, chamfer, dross, heat affected zone (HAZ), kerf width, MRR
and SR. Now, in Figure 13, the end user preselects arc voltage, cutting current, feed
rate and torch stand-off distance as the available PAM process parameters, and
chamfer, dross, kerf width and SR as the desired responses.

7 - N
3 Formi7 Lo B e

Selected process PAM

Select process parameters Select responses
v Arc voltage (V) [~ Conicity (%)
[v Cutting current (A) [v Chamfer (mm)
[~ Cutting speed (mm/min) [v Dross (sq. mm)
[V Feed rate (mm/min) [ Heat affected zone (um)
[v Torch standoff distance (mm) v Kerf width (mm)
[~ Plasma gas pressure (kg/sq. cm) [~ Matenal removal rate (cumm/min)
[~ Pierce height (mm) ¥ [Surface roughness (Ra) (um)

SELECTALL |
SELECTALL
NEXT RESPONSE TO PP |

Figure 13. Window for selection of PAM process parameters and
responses

The values of these four shortlisted PAM process parameters are set as arc voltage
120V, cutting current = 42.5 A, feed rate = 945 mm/min and torch stand-off distance
= 2.5 mm, as exhibited in Figure 14. Based on this parametric combination, the
developed decision model predicts the shortlisted responses as chamfer = 1.80-1.85
mm, dross = 3.60-3.64 mm?, kerf width = 2.70-2.75 mm and SR = 0.76-0.85 pm. Thus,
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this system would help the process engineers to have an idea about the achievable
values of different responses based on a preselected set of parametric combinations.

& Forml =X
Exccess paramcies Responses
Feed rate (mm/min) 945 = Chamfer (mm) 1.80 - 1.85
Arc voltage (V) 120 = Dross (sq. mm) 3.60 - 3.64
Cutting current (A) 425 = Kerf width (mm) 2.70-2.75
Torch standoff distance (mm) ];75—:‘1 Surface roughness (Ra) (um) 0.76 - 0.85

Figure 14. Prediction of responses based on PAM process parameters

In Figure 13, if the end user presses the ‘RESPONSE TO PP’ functional key, a new
input window, as shown in Figure 15, would now be available where the ranges of
values for different responses can be set according to the end product requirements.
In this example, the end user opts for high value of MRR (2.06-2.80 mm3/min), and
low values for conicity (0.009-0.0212), HAZ (325-400 pm), chamfer (1.00-1.32 mm),
dross (0.45-3.49 mm?), kerf width (1.93-2.53 mm) and SR (0.724-0.875 um). Now,
based on these response requirements, the developed system would advise the
process engineer to set different parameters of the PAM process as feed rate = 930-
950 mm/min, cutting speed = 2260-2280 mm/min, plasma gas pressure = 4.57-4.92
kg/cm?, arc voltage = 115-125 V and torch stand-off distance = 2.5-4.5 mm. These are
only the tentative settings of the considered PAM setup. The process engineer may
require to fine-tune these settings in order to achieve more accurate results.
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& Form19 (= | B e
Responses Process parameters
Conicity (%) [Low (0.009 - 0.021) ~| Feed rate (mm/min) P05
Heat affected zone (im) [ Low (325 - 400) ~ Cautting speed (mm/min) 2260 - 2280
Chamfer (mm) [ Low (1.00 - 1.32) ~|  Plasma gas pressure (kg/sq. con) 457 -4.92
Dross (sq. mm) [Low (0.45 - 3.49) - Arc voltage (V) 1197125
Kerf width (mm) I Low (1.93 - 2.53) = Torch standoff distance (mm)  25-4.5

Matenial removal rate (cumm/ min)[ High (2.06 - 2.80)
Surface roughness (Ra) (pm) [Lo“’ (0.724 - 0.875)

Ladled

oK

Figure 15. Prediction of PAM process parameters based on the responses

As shown in Figure 16, when the end user wants to machine precision holes on
refractories using the available PAM process, the system would automatically
generate an error message highlighting its inability to machine the specified work
material.

[ rormi o i |

Select an NTM process Choose a work material Choose a shape feature Choose a sub-shape feature

[ Plasma arc machining (PAM) ~| [ Refractories | [Holes +| [ Precision holes (D < 0.25mm) ~|

=)

ERROR
Refractories matedial and precision hales (D < 025mm) feature cannot
be machined by plasma arc machining (PAM) pracess

Figure 16. An error message for PAM process

In PAM process, torch stand-off distance has the strongest effect on the quality
characteristics. Stand-off distance is one of the crucial parameters in PAM process as
it controls SR and conicity of the cut edge. It has also been observed that cutting
current also influences the HAZ of the cut edge. It greatly influences SR of the cut due
to the fact that the plasma gas beam is not of cylindrical shape but resembles the shape
of areversed candle flame. Therefore, depending on the relative position of the plasma
to the workpiece surface, the surface quality is drastically affected due to thermal
properties of the material (Salonitis & Vatousianos, 2012). The MRR increases with an
increase in gas pressure and high gas flow because it leads to an increase in mean arc
voltage and its fluctuations as more heat is transferred into the workpiece, and
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consequently, SR reduces. However, MRR remains constant with an increase in stand-
off distance as there is a slight fluctuation in energy. For higher plasma gas flow rate,
arc voltage also becomes higher. As the gas flow rate increases, more energy is needed
to ionize the gas, therefore the arc voltage should be higher. The kerf is narrower at
the top, it widens at the middle, and again becomes narrower at the bottom, making
heat distribution along the cut to be irregular. During PAM operation, dross formation
at the bottom of the workpiece needs to be minimized while controlling the
corresponding process parameters. At low speed, input energy to the workpiece is
high, causing melting of more materials. Dross is formed when adequate force of the
plasma jet is not available. To obtain a dross-free cut surface, plasma force and energy
input to the workpiece need to be balanced properly. Plasma power increases with
plasma gas flow rate and arc current. To achieve a square cut of narrow kerf with
minimal dross, the decision model can efficiently predict the tentative ranges of the
process parameters (Mittal & Mahajan, 2018). The same parametric combination for
the PAM process is also well derived by the past researchers (Ramakrishnan et al,,
2018; Prasad & Chakraborty, 2018; Chakraborty et al., 2020).

5. Conclusions

In this paper, an attempt is made to design and develop an intelligent decision
model in VBASIC so as to help the concerned process engineers in the domain of NTM
processes. Based on the availability of a particular NTM process, and selected
workpiece and shape feature combination, it can identify values of different responses
for a given set of parametric combinations. On the other hand, it has also the capability
of predicting the tentative settings of different NTM process parameters while meeting
the specified values of a given set of responses. In this system, the decision making
procedure is based on an exhaustive set of IF-THEN rules, and it consists of all the
possible combinations of different NTM processes, work materials and shape features.
It is easy to operate as the graphical user interface continuously interacts with the end
users restricting them to commit any error. It has also the flexibility to cater any
combination of NTM process, work material and shape feature. It warns the end user
when a particular machining operation cannot be performed by a specific NTM
process. The developed decision model assists the process engineers and designers to
efficiently identify the technically feasible NTM processes in the early design and
machining stages, enabling in developing the required product functionalities and
appearance with the feasible processes in mind, while utilizing the process
characteristics more effectively. After the detailed design is complete, the feasible
processes identified in the earlier steps can be reevaluated, reassessing their technical
feasibilities for manufacturing the designed product. The design can also be modified
accordingly, if needed, to ensure manufacturability of the product. The main
advantage of this decision model is that it does not require any in-depth technical
knowledge regarding the applicability of the NTM processes. It also acts as an expert
system to ease out and automate the NTM process selection procedure.

This decision model has also some limitations. Firstly, it does not take into account
the presently available hybrid machining and additive manufacturing processes.
Moreover, it is developed based on a static database. It would be worth investigating
the possibility of integrating the decision model into the ‘cloud’ under the Industry 4.0
context, allowing prompt feedback and rapid update. It is also assumed that the
developed decision model has no maintenance and operation costs. It lacks the
creative responses of the human experts, and is also not able to explain the logic and
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reasoning behind a decision to the end user. It opens opportunities to include
micromachining, hybrid machining and additive manufacturing technology selection
modules as well as improving selection results while incorporating more selection
criteria and work materials in the model. It is expected that the developed model
would be well accepted by the manufacturing industries for arriving at the prompt
NTM process selection decisions. It can also be implemented in a group decision
making environment involving opinions of different process engineers having varying
background knowledge and expertise for more pragmatic results. Its capability, reach
and usability may further be enhanced while making it entirely web-based to become
accessible to its end users through an internet network.
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