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Abstract: A theory of refining pure strategy efficient Nash equilibria in finite 
noncooperative games under uncertainty is outlined. The theory is based on 
guaranteeing the corresponding payoffs for the players by using 
maximultimin, which is an expanded version of maximin. If a product of the 
players’ maximultimin subsets contains more than one efficient Nash 
equilibrium, a superoptimality rule is attached wherein minimization is 
substituted with summation. The superoptimality rule stands like a backup 
plan, and it is enabled if just a single refined efficient equilibrium (a 
metaequilibrium) cannot be produced by maximultimin. The number of the 
refinement possible outcomes is 10. There are 3 single-metaequilibrium 
cases, 3 partial reduction cases, and 4 fail cases. Despite successfulness of 
refinement drops as the game gets bigger, efficient equilibria in games with 
no more than four players are successfully refined at no less than a 54 % rate. 

Key words: finite noncooperative games, efficient equilibria, refinement, 
maximultimin, superoptimality, metaequilibrium, uncertainty partial 
reduction. 

1. Introduction 

Game theory allows making decisions that would be appropriate simultaneously 
for multiple sides (or players, persons, subjects, etc.). This is achieved by persuading 
players that holding at the equilibrium is the best rule. There are many types of 
equilibria but mostly they are modifications of Nash equilibrium. Either in pure or 
mixed strategies, Nash equilibrium is a stable state, at which the player cannot 
increase one’s payoff by acting alone. In a finite noncooperative game (FNCG), 
however, a few Nash equilibria in pure strategies can exist (Harsanyi & Selten, 1988; 
Osborne, 2003; Vorob’yov, 1984). Such equilibria may be nonequivalent: despite the 
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equilibrium stability itself, the players’ payoffs at some equilibrium can be greater 
that those at other equilibria (Leinfellner & Köhler, 1998; Osborne, 2003; Vorob’yov, 
1984). The equilibria which are strictly and non-strictly dominated are out of 
interest for players. Then, only efficient equilibria remain. A question is how to 
persuade players to hold at a certain efficient equilibrium, when there are multiple 
equilibria (two or more)? For FNCGs with two or three players (bimatrix and 
trimatrix games) this question is yet not trivial (Vorob’yov, 1985; Vorob’yov, 1958). 
FNCGs with more than three players are rather complicated, so searching for the 
most efficient equilibrium, if any, in pure strategies requires a non-trivial theoretic 
basis. 

In FNCGs having multiple equilibria, the subsequent decision-making problem 
lies in refining those equilibria. The refinement is required, in the first turn, for real-
world practice applications, wherein messing around with multiple equilibria makes 
no sense. Those applications emerge from economics, ecology, politics, 
jurisprudence, computer networking, and other related fields, where multiple 
subjects come to interaction (Harsanyi & Selten, 1988; Leyton-Brown & Shoham, 
2008; Myerson, 1997; Romanuke, 2010b; Vorob’yov, 1984). 

2. Background and motivation 

In game theory, the refinement is understood as the selection of a subset of such 
equilibria, which are believed to be more plausible than other equilibria (Belhaiza et 
al., 2012; Myerson, 1978; Vorob’yov, 1985). Sometimes, it is called the identification 
of actualized equilibria (Dopfer & Potts, 2007; Liu & Forrest, 2010). Thus, the 
refinement does not necessarily imply selecting the best efficient Nash equilibria. 
Nor does it imply finding a single efficient equilibrium. In a wider sense, the 
refinement implies narrowing down the game model decisions. Nash equilibria, for 
instance, are a particular example of a set of such decisions) (Harsanyi & Selten, 
1988; Vorob’yov, 1984, 1985). 

The essential obstacle is that the plausibility does not straightforwardly imply 
profitability. For repeatable FNCGs, it means that the refined equilibrium can be 
unstable: a player cannot be “captured” on a non-profitable payoff, although such 
payoff issues from a plausible equilibrium (Belhaiza et al., 2012; Fudenberg & Tirole, 
1991; Myerson, 1978). So, in the course of game repetitions, the player may spring 
off its non-profitable strategy (Leinfellner & Köhler, 1998; Liu & Forrest, 2010; 
Osborne, 2003; Romanuke, 2010b). Thus, the plausibility determining the refinement 
without primordial profitability is not stable itself. In particular,  -equilibria are that 

kind of instability, wherein players may constantly keep searching for profits rather 
than stop at a moment (Belhaiza et al., 2012; Fudenberg & Tirole, 1991; Vorob’yov, 
1984, 1985). 

In non-repeatable FNCGs, profitability mainly defines the plausibility. It simplifies 
persuasion of selecting definite equilibrium strategies. On the other hand, a great 
deal of the existing refinements, e. g. Mertens-stable equilibrium (Kohlberg & 
Mertens, 1986), trembling hand perfect equilibrium (Selten, 1975), proper 
equilibrium (Myerson, 1978; Van Damme, 1984), sequential equilibrium (Fudenberg 
& Tirole, 1991; Gerardi & Myerson, 2007), quasi-perfect equilibrium (Bajoori et al., 
2013; Mertens, 1995; Van Damme, 1984), become inapplicable due to mixed 
strategies lose their reason. Strong Nash equilibrium (Suh, 2001; Tian, 2000) 
remaining as the most remarkable refinement is efficient itself (Romanuke, 2016b, 
2016a). 
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In practice, the existing approaches to refining rarely provide just a single refined 
equilibrium. Commonly, there are still multiple (or even a continuum of) equilibria 
after the refinement (Gerardi & Myerson, 2007; Harsanyi & Selten, 1988; Myerson, 
1978; Romanuke, 2018a). Moreover, sometimes equilibria can be just nonrefinable. 
Such nonrefinability is easily shown and seen by examples of the bimatrix  
(even 2 2 ) game whose efficient Nash equilibria produce either identical or 
symmetric payoffs (Myerson, 1997; Osborne, 2003; Romanuke, 2010b; Vorob’yov, 
1985, 1984). Bigger FNCGs with the nonrefinability are easily built. At that, 
symmetric equilibria are even worse than identical. In other cases, efficient equilibria 
are nonrefinable as there is no additional information that could have helped to 
understand which equilibrium is better and which is worse (Romanuke, 2018a; Suh, 
2001; Tian, 2000). This is equivalent to uncertainty of equilibria, where players may 
not comprehend a distribution of the plausibility over definite equilibria, except for 
their profitability at one-step action. 

An effort made in (Romanuke, 2018b) for refining pure strategy efficient Nash 
equilibria in trimatrix games had been developed on a base of expanding the 
refinement approach for bimatrix games. For a player, that novel approach exploits 
the maximin, expanded to the maximinimin principle, and a superoptimality rule 
using summing over pure strategy subsets of the other players. The maximin rule is 
intended for guaranteeing payoffs. The superoptimality rule (Romanuke, 2018a) is 
enabled if just a single refined efficient Nash equilibrium cannot be produced by 
maximin. So, the present goal is to finalize the theory of refining pure strategy 
efficient Nash equilibria in FNCGs under uncertainty. 

3. Denotations of FNCG and its efficient Nash equilibria 

We consider a non-repeatable FNCG 

 (1) 

of  players, in which nX  is a set of pure strategies of the n -th player, nK  is 

its payoff -matrix by  and  for the set of indices 

 
1

N

i i
J j


 ,   1,i ij M   1,i N  . (2) 

The non-repeatability means that FNCG (1) models a process, in which the player 
upon one’s decision is made is able to implement it only once (or a few times at 

most). Suppose that, in FNCG (1),  
1

Q

q q
E e


  is a set of efficient Nash equilibria in 

pure strategies, where  (a refinement is needless if 1Q  , i. e. there is a 

single equilibrium): 

  by  . (3) 

Pure strategy efficient Nash equilibrium (3) produces a payoff aggregate 

 (4) 
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whose N  elements are the respective elements of N  payoff matrices 

. (5) 

Nash equilibria, which are strictly and non-strictly dominated by other Nash 
equilibria, bear no utility (in fact, they are inefficient). This is why they are not 
further considered (Harsanyi & Selten, 1988; Liu & Forrest, 2010; Osborne, 2003; 
Romanuke, 2018b, 2018a; Vorob’yov, 1985, 1984). 

All pure strategy efficient Nash equilibria in FNCG (1) with payoff matrices (5) 
constitute a subset of all pure strategy situations which contain equilibrium 
strategies of every player: 

 (6) 

by 

  1,n N  , (7) 

where the indices’ subsets 

 (8) 

are such that for every element of set   1,q Q   such that , 

1,n N . It should be noted that every element of set  is not necessarily an 

equilibrium point. This means that some aggregates  

  

may not be the equilibria – see an example sketch in Figure 1 and also refer to 
Figure 1 in (Romanuke, 2018b). 

Theoretically, inefficient equilibria make no sense. A situation producing payoffs 

  0    by  some   1,m N  (9) 

cannot be an efficient Nash equilibrium, whichever situation producing payoffs (4) is. 
However, if the weak Pareto efficiency is acceptable to supplement the set of the 
efficient Nash equilibria, then both situations producing payoffs (4) and (9) are 
efficient, if the situation (4) is an efficient Nash equilibrium. In general, the weak 
efficiency, if accepted, implies that a situation producing payoffs 

  0n      

for  all     1, \n N m   by  some   1,m N  (10) 

is efficient as well (Kumano, 2017; Marden, 2017). Nevertheless, if Nash equilibria 
are weakly efficient in bimatrix games, then they are fairly senseless due to the 
player whose payoff is decreased by   will avoid one’s weakly efficient strategy. In  
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Figure 1. The efficient Nash equilibria set (highlighted via dashed rectangles)  
and its relation (shown by arrows) to subsets (7) in a trimatrix 7 4 5   game  

over a player’s payoff three-dimensional matrix of size 7 4 5    

(the view is the same for every player);  

see the similar visualizations in (Romanuke, 2018b,  2018a) 

trimatrix games, where the situation producing payoffs  

 (11) 

is an efficient equilibrium, a weakly efficient situation producing payoffs 

,  or  ,   

or   (12) 

by pretty great 1  and 2 , or 1  and 3 , or 2  and 3 , respectively, is fairly senseless 

as well. However, if  
3

1r r
  are sufficiently (or even negligibly) small, weakly efficient 

Nash equilibria producing payoffs (11) and (12) may become (more) significant. For 
FNCGs with four players and more, weak efficiency of Nash equilibria gets more 
important, especially if payoffs (9) differ from efficient payoffs (4) by a negligible  . 

4. Properties of payoff matrices and distinguishability of efficient Nash 
equilibria 

First, none of N  payoff matrices (5) of FNCG (1) can have elements, whose values 

are the same. In particular, matrices (5) of FNCG (1) cannot be null matrices. In 

addition, these matrices cannot contain strictly dominated  1N  -dimensional 

slices. Otherwise, if there are strictly dominated  1N  -dimensional slices, the slices 

are deleted. For example, a 3 2 2   game with matrices (a similar example can be 

found in (Romanuke, 2018b) but matrices’ values here have been slightly changed) 
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1

7 4 6 2

5 5 3 6

6 3 5 1

    
    

     
        

K ,  2

7 6 4 3

7 6 5 7

6 7 9 6

    
    

     
        

K ,  3

7 6 6 6

4 8 4 8

8 9 7 8

    
    

     
        

K  (13) 

is reduced to the 2 2 2   game with payoff 2 2 2   matrices 

1

7 4 6 2

5 5 3 6

    
     

    
K ,  

2

7 6 4 3

7 6 5 7

    
     

    
K ,  

3

7 6 6 6

4 8 4 8

    
     

    
K . (14) 

Indeed, the third slice of matrix 1K  in (13) is strictly dominated by its first slice (the 

first row values are greater than the third row values), and so the first player will 
never use one’s pure strategy which is strictly dominated. There are two efficient 

Nash equilibria in the trimatrix game with payoff matrices (14):  1 1 1 1, ,e x y z  and 

 2 2 2 2, ,e x y z . These equilibria produce payoffs  7, 7, 7  and  6, 7, 8 , respectively. 

Note that the collective payoffs are the same. Meanwhile, payoffs  6, 7, 8  are 

produced by the situation involving the non-strictly dominated second slice of matrix 

3K  (where the left flat submatrix non-strictly dominates the right flat submatrix). 

Another peculiarity is that the second player does not care about difference of one’s 
payoffs at these equilibria, whereas equilibrium 2e  imparts a little advantage to the 

third player (as opposed to the first player). Thus, equilibrium 1e  is more attractive 

for the first player, and equilibrium 2e  is more attractive for the third player. The 

strength of the attractiveness is the same. 
Distinguishability of efficient Nash equilibria is a principally important property 

before considering possible refinement. Identical payoff aggregates produced in 
symmetric situations are non-distinguishable. An example is a trimatrix 2 2 2   
game with payoffs matrices (Romanuke, 2018b) 

0 0

1

0 0

       
     

       
K   and  0 0

2

0 0

       
     

       
K   and   

0 0 0

3

0 0 0

       
     

       
K   by  0   ,  0   ,  0   . (15) 

Unlike the slices (left and right flat submatrices) of matrices 1K  and 2K , the slices 

(left and right ones) of matrix 3K  are different. This game has two efficient Nash 

equilibria, each of which produces the same payoff triplet  , ,   . Thus, these 

equilibria are absolutely non-distinguishable. Therefore, cyclicity and symmetry of 
payoff aggregates (with respect to situations in which they are produced) is opposed 
to distinguishability of efficient Nash equilibria. So, only refinement based on acyclic-
and-asymmetric payoff aggregates is possible. 

5. Maximultimin and superoptimality for refining efficient Nash 
equilibria in FNCGs 

Considering the inclusion of the set of the efficient Nash equilibria in (6), FNCG 

can be reduced to an FNCG defined on product . In the reduced FNCG, 

payoff matrices are 
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  at   (16) 

by  1,r N   and re-indexing with a set  of 

corresponding indices. If matrices (16), being the corresponding submatrices of 

matrices (5), still have N  dimensions, then they constitute the reduced  

game by (7) and (8). The uncertainty amongst the equilibria to be refined (or 
selected) is still the same as it is for the initial FNCG (1). 

To reduce the uncertainty, the maximin principle can be applied to guarantee the 

corresponding “no-less-than” payoffs for the players. For  games, this 

principle is the maximultimin being a generalization of maximin and maximinimin by 
Romanuke (2018a, 2018b): 

   

  by  ,  1,r N  (17) 

and re-indexing with a set  of corresponding indices. Set (17) 

guarantees that the r -th player gets a payoff not less than 

,  1,r N . (18) 

However, not all situations in the set  

 (19) 

are efficient Nash equilibria. Moreover, set (19) may not contain any equilibria. 
If set 

 (20) 

is nonempty then it contains the refined efficient Nash equilibria. In particular, if set 
(20) is a singleton (in other words, it contains just a single element), then the 
refinement is finished, and the single element is the single efficient Nash equilibrium. 
If R    or 1R   then the superoptimality rule originally introduced to distinguish 

optimal player strategies (game situations) in matrix games (Romanuke, 2010a) can 
be applied just as well as it is applied for bimatrix and trimatrix games in 
(Romanuke, 2018a) and (Romanuke, 2018b), respectively. 

If set R    then using strategies from subsets (17) involves players into an 

unstable (wandering) process: the players will search for new pure strategies 
beyond these subsets for every game round (as there is no a single equilibrium). To 
guarantee the best payoffs for players under uncertainty of the efficient equilibria in 
this case, one of the best actions is to use strategies from subsets. 
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  by  . (21) 

Subsets (21) are those guarantors. This uncertainty reduction concerns as FNCG (1), 
as well as the reduced FNCG with payoff matrices (16), whether matrices (16) have 
N  dimensions or fewer. 

In the case of 1R   there are at least two equilibria in product (19) of 

maximultimin subsets (17). Thus, we still have an uncertainty of which equilibrium 
to select. Let  

 (22) 

by  

  and    1,r N   

and the respective indices’ subsets  by which 

. (23) 

If  then, according to superoptimality, 

 

   

by   (24) 

and re-indexing with a set  of corresponding 

indices, 1,r N . Otherwise, if , then  and . Note 

that finding sets (24) does not guarantee that  

*

1

N

r

r

X R



  
  

  
 , (25) 

where a case 

*

1

1

N

r

r

X R



  
 

  
  (26) 

is as ideal as the case 1R  . Statement (25) is only assuredly true for a case, when 

  for  all     01, \r N r ,  and    or  . (27) 
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Hence, the refinement is finished by processing the reduced game with payoff 
matrices (16), wherein primarily maximultimin subsets (17) are found along with 
maximultimin payoffs (18). The process of refining is continued to payoff aggregate 

maximizations if 1R  . The refinement is counted perfectly finished when 1R   or 

(26) is true. 
If set (19) is a singleton and it contains a single efficient equilibrium, then using 

strategies from other situations is unreasonable. In this case, it can be said that 
product (19) of the maximultimin subsets has perfectly responded, and the players 
will stick to the single efficient equilibrium. However, if there are at least two 
equilibria with different payoffs, the single efficient equilibrium is simultaneously 
unprofitable (or disadvantageous) for 0N  players, where  0 1, 1N N  . The non-

profitability (disadvantageousness) follows from the Pareto efficiency definition.  
Suppose that a player, who loses some payoff at the single refined efficient 

equilibrium, tries to increase one’s payoff. The payoff increment is possible by when 
other players do not change their strategies (which are still profitable for them) upon 
the equilibrium is changed. Consequently, the payoff increment is unlikely even for a 
few rounds of the game. This attitude can be re-formulated in the terms of the 
noncooperative game equilibrium: while at the Nash equilibrium a player cannot 
improve one’s payoff by acting oneself, at the single refined efficient equilibrium it is 
unlikely for a player to increase one’s payoff at least for a few rounds of the game 
(Barelli & Duggan, 2015; Kumano, 2017; Romanuke, 2010b). Thus the refined 
efficient equilibrium called the metaequilibrium becomes an attractive point for all 
the players (Romanuke, 2018b), although with probably different strengths of the 
attraction. Obviously, there can be a few refined efficient equilibria. Despite such 
metaequilibria are considered nonrefinable, the refinement may have a positive 
impact by some conditions that will be explained in the section right below. 

6. A generalized algorithm of refinement in FNCGs 

The stated approach of maximultimin and superoptimality for refining efficient 
Nash equilibria in FNCGs with subsets (17), (21), or (24) does not guarantee the best 
outcome, i. e. that there will be a single metaequilibrium. In general, this approach 
gives us one of the seven possible final outcomes: 

1. The refinement is quite impossible (it totally fails) when R    and 

. (28) 

Both the maximultimin principle and superoptimality rule miss all the equilibria 
here. This is the case when both the maximultimin and superoptimality do not work 
at all. This is the worst case. 

2. A few metaequilibria are returned when R    but 

. (29) 

This outcome has two mutually exclusive interpretations. If 

 (30) 
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then the uncertainty amongst the equilibria is nonetheless partially reduced. 
Otherwise, if 

 (31) 

then the superoptimality rule hits the whole set of the equilibria. Clearly, this does 
not reduce the uncertainty amongst the equilibria as those metaequilibria remain the 
same as all those efficient equilibria. So, this is a fail of the refinement, where the 
superoptimality rule works in vain. 

3. A few metaequilibria are returned when 1R   and equality (26) is false by 

*

1

N

r

r

X R



  
 

  
 . (32) 

Such an outcome has two mutually exclusive interpretations. If R E , that is 

1 R E   (33) 

here, then the uncertainty of equilibria is nonetheless partially reduced. Otherwise, if 

R E  by (32), then the superoptimality rule does not hit an equilibrium, whereas 

the maximultimin hits the whole set of the equilibria (factually, this is a fail of the 

refinement, where the maximultimin principle works in vain). There are R  

metaequilibria anyway, found by just subsets (17). 

4. A few metaequilibria are returned when 1R   and equality (26) is false by 

*

1

1

N

r

r

X R



  
 

  
 . (34) 

Such an outcome has two mutually exclusive interpretations also. If 

*

1

1

N

r

r

X R E



  
  
  
  (35) 

then the uncertainty of equilibria is nonetheless partially reduced (either owing to 
maximultimin or superoptimality). Otherwise, if 

*

1

N

r

r

X R E



  
 

  
  (36) 

then both the maximultimin and superoptimality hit the whole set of the equilibria. 
As those metaequilibria remain the same as all those efficient equilibria, the 
uncertainty amongst the equilibria is not reduced at all. So, this is a fail of the 
refinement, where both the maximultimin and superoptimality work in vain. 

5. A single metaequilibrium is returned when 1R   by finding just subsets (17). 

This is the perfect and fastest outcome of the refinement. 

6. A single metaequilibrium is returned when 1R   and equality (26) is true. 

Here, subsets (17) and (24) are involved. This is the perfect refinement outcome as 
well. 

7. A single metaequilibrium is returned when R    but 
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. (37) 

Although the maximultimin principle misses all the efficient equilibria, the 
superoptimality rule perfectly hits the single metaequilibrium. 

Therefore, a generalized algorithm of refinement in FNCGs under uncertainty 
consists of four key branches (Figure 2): 

 

1R   

Start 

Find maximultimin subsets (17) 

False True Intersection R  by (20) contains  
a single equilibrium 

False True 

Find subsets (23) Find subsets (21) 

The refinement 

totally fails 

Return 

Return 

A single 

metaequilibrium 

is in set (20) 

False True Intersection (38)  
is nonempty 

Find subsets (24) 

False True Equality (37) 
holds 

Return 
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Figure 2. An algorithmic generalized scheme for the Nash equilibria refinement in 

FNCGs (Romanuke, 2018b,  2018a) 
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1. Find maximultimin subsets (17) over payoff matrices (16). 

2. Return a single metaequilibrium if 1R  , i. e. product (19) of maximultimin 

subsets (17) contains the single equilibrium. 
3. If R    then find subsets (21) which maximize the respective players’ payoffs 

over subsets (7). Finally, return the resulting set 

, (38) 

whether containing metaequilibria or not. 

4. Otherwise, if 1R   then maximize the respective players’ payoffs over subsets 

(23), and find those of subsets (24) (by 1,r N ) whose corresponding subsets (23) 

contain more than one strategy. Finally, determine a set 

*

1

N

r

r

X R



  
 
  
 . (39) 

If set (39) is not empty, return the resulting metaequilibrium or metaequilibria in set 
(39). 

More precisely, if to distinguish the partial equilibrium uncertainty reduction and 
the refinement fail in outcomes ## 2 – 4, the number of the refinement possible 
outcomes is 10. They all are highlighted with three different colors in Figure 2. 
Statistics of those outcomes bear some similarity at least for bimatrix and trimatrix 
games by increasing the number of players’ pure strategies (Romanuke, 2018b). 
Statistics for other FNCGs will be revealed in the section right below. 

7. Statistics of refinement 

For getting more real examples, FNCGs are simulated by a pseudorandom matrix 
generator suggested in (Romanuke, 2018b). According to the generator, we take 

1

N

r

r

M


  payoff matrix equal to 

   1

N

r r
b M


    (40) 

by a function   1

N

r r
M


  returning a pseudorandom 

1

N

r

r

M


  matrix whose 

elements are drawn from the standard uniform distribution on the open interval 

 0;1  and a function     returning the integer part of number  , where 0b  , 

0  . Constants b  and   are taken such that the payoffs would be moderately 

scattered (Leinfellner & Köhler, 1998; Leyton-Brown & Shoham, 2008; Myerson, 
1997; Romanuke, 2018b; Vorob’yov, 1985, 1984). The purpose is to count statistics 
of refinement along with how many FNCGs need refinement and need not, having 
either a single equilibrium or no equilibria at all. For obtaining confident results, 
each type of FNCG will be generated for 100,000 times. 

Generator (40) will be used to produce the same number of pure strategies for 
players. Such simplification does not influence much on common inferences from 
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results of the simulation. Bimatrix games are generated by 

  1 110 , 40M M     for  1 2, 10M  . (41) 

So, statistics for bimatrix games will be re-examined for 2 2  up to 10 10  games. 

Trimatrix games are generated in the same way: 

  1 1 110 , , 40M M M     for  1 2, 10M  . (42) 

Processing FNCGs with a greater number of players consumes much more resources, 
so their topmost number of pure strategies is decreased: 

  1 1 1 110 , , , 40M M M M   ,  1 2, 8M  , (43) 

  1 1 1 1 110 , , , , 40M M M M M   ,  1 2, 7M  , (44) 

  1 1 1 1 1 110 , , , , , 40M M M M M M   ,  1 2, 6M  , (45) 

for FNCGs with  4, 5, 6N   players, respectively. 

The statistics of refinement should reflect the number of FNCGs which include the 
following features: 

1. Have no Nash equilibria. 
2. Have a single equilibrium. 
3. Need refinement. 
4. A single metaequilibrium is returned by maximultimin in set (20). 
5. A single metaequilibrium is returned by superoptimality in set (38). 
6. The refinement totally fails. 
7. The uncertainty of equilibria is partially reduced owing to superoptimality: a 

few metaequilibria are returned in set (38). 
8. A fail of the refinement: maximultimin does not hit an equilibrium, although 

superoptimality hits all the equilibria at once. 
9. A single metaequilibrium is returned by superoptimality in set (39). 
10. The uncertainty of equilibria is partially reduced owing to maximultimin: a 

few metaequilibria are returned in set (20), whereas superoptimality does not hit an 
equilibrium. 

11. A fail of the refinement: maximultimin hits all the equilibria at once, 
whereupon superoptimality does not hit an equilibrium. 

12. The uncertainty of equilibria is partially reduced: a few metaequilibria are 
returned in set (39). 

13. A fail of the refinement: maximultimin hits all the equilibria at once, as well 
does superoptimality. 

Additional commentaries to the list required for unambiguous interpretation are 
as follows. Those FNCGs counted by feature #3 have two or more efficient equilibria. 
Feature #5 implies that R   , i. e. maximultimin does not hit an equilibrium. 

Feature #6 implies that R    and equality (28) holds (maximultimin does not hit 

an equilibrium, nor does superoptimality as well), so both sets (20) and (38) are 
empty. Maximultimin does not work in features #7 and #8 (again, R   ). 

Statistics of refinement for bimatrix games generated by (41) are shown in 
Figure 3. Whichever the number of pure strategies is, features ## 7 – 12 are 
statistically negligible. Meanwhile, as this number increases, the number of FNCGs 
having a single equilibrium decreases (feature #2) along with the increasing number 
of FNCGs wherein the refinement is needed (feature #3). Fail cases, when both 
maximultimin and superoptimality do not hit an equilibrium (feature #6), 
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considerably increase. Eventually, they constitute a significant part for 10 10  games. 

The fail of the refinement caused by the opposite event (feature #13) grows but 
much slower. The superoptimality rule hits the single metaequilibrium quite rarely 
(feature #5). Nonetheless, maximultimin does that effectively growing up as 1M  

increases. The ratio of the single-metaequilibrium cases (features ## 4, 5, 9) to the 
refinement fail cases (features ## 6, 8, 11, 13) varies from 1.2 to 2.04, where the 
worst refinable bimatrix games are 9 9  ones (54.6 % of successful refinement into 

single-metaequilibrium), and the best refinable bimatrix games are 3 3  ones 

(67.1 %). Considering positively also the partial reduction of the equilibria 
uncertainty (adding features ## 7, 10, 12), the ratio varies from 1.22 to 2.05: the 
worst and best refinable 9 9  and 3 3  bimatrix games respectively constitute 55 % 

and 67.2 % of the successful refinement. 
 

 

Figure 3. Statistics of refinement for bimatrix games generated by (41) 

Statistics of refinement for trimatrix games generated by (42) and shown in 
Figure 4 resemble that in Figure 3. However, a few differences are distinctly visible. 
The increasing number of FNCGs, wherein the refinement is needed (feature #3), is 
from 30.2 % to 192.6 % greater. Fail cases (feature #6) are stronger, whereas the fail 
of the refinement caused by the opposite event (feature #13) slowly descends. 
Maximultimin and superoptimality separately hit the single metaequilibrium 
(feature #4 and #5) by 61.7 % better. The ratio of the single-metaequilibrium cases 
(features ## 4, 5, 9) to the refinement fail cases (features ## 6, 8, 11, 13) varies from 
1.06 to 2.09, where the worst refinable trimatrix games are 10 10 10   ones (51.5 % 

of successful refinement into single-metaequilibrium), and the best refinable 
trimatrix games are 2 2 2   ones (67.7 %). Adding the partial reduction of the 
equilibria uncertainty (features ## 7, 10, 12), the ratio varies from 1.08 to 2.13: the 
worst and best refinable 10 10 10   and 2 2 2   trimatrix games respectively 

constitute 52 % and 68.1 % of the successful refinement. On average, trimatrix 
games have better refinability (considering features ## 4, 5, 7, 9, 10, 12) by 63.3 %. 
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Statistics for FNCGs with four players (Figure 5) much differ from those with five 
(Figure 6) and six players (Figure 7). FNCGs with 4N   are only 2.87 % refinable 

better than trimatrix games. Then, nevertheless, refinability of FNCGs worsens from 
4N   to 5N   by 29.1 %, and from 5N   to 6N   by 63.5 %. 

 

 

Figure 4. Statistics of refinement for trimatrix games generated by (42) 

 

 

Figure 5. Statistics of refinement for FNCGs with 1 1 1 1M M M M    payoff matrices 

generated by (43) 
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Figure 6. Statistics of refinement for FNCGs with 1 1 1 1 1M M M M M     payoff 

matrices generated by (44) 

 

 

Figure 7. Statistics of refinement for FNCGs with 1 1 1 1 1 1M M M M M M      payoff 

matrices generated by (45) 
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A conspicuous fact of FNCGs by  4, 5, 6N   is that feature #11 starts badly 

growing. Finally, 85.5 % of 6 6 6 6 6 6      games needing refinement come with 

the fail: maximultimin hits all the equilibria at once, whereupon superoptimality 
does not hit an equilibrium. They have only 10 % successful refinement including the 
uncertainty partial reduction. Dyadic games with that many players, i. e. 
2 2 2 2 2 2      games, have 60.2 % of that measure, though. In general, except for 
2 2  bimatrix games, dyadic games are the best refinable. Their ratio of the 
successful refinement decreases from 68.1 % down to 60.2 %. In total ratio, the part 
of successful refinement decreases: it is 58.6 %, 57 %, 54.4 %, 39.9 %, 26.1 % for 

2, 6N  . 

8. Discussion 

Obviously, the presented theory does not assure a perfect refinement. A total 
number of fails increases as FNCG (1) gets of a bigger size. The perfect outcome 
(features ## 4, 5, 9) strongly depends on the key parameters of an FNCG: the number 
of players and the players’ numbers of pure strategies. That way how payoff matrices 
are given influences also, but a regular structure of payoff scattering, like the 
considered (40), is far less influential. If payoffs are non-moderately (illogically) 
scattered then a single metaequilibrium, if even it exists, may be significantly 
disadvantageous for one or more players (Romanuke, 2018b). This disadvantage, 
meaning “someone always has less”, is common for the known refinement concepts. 

Bimatrix, trimatrix, and 1 2 3 4M M M M    games are the most widespread ones 

in practice. And for them the stated approach of maximultimin and superoptimality 
for refining efficient Nash equilibria works very good. Based on the statistics by 
generators (41) – (45), the best refinability (considering only features ## 4, 5, 7, 9, 
10, 12; do not confuse it with the part of successful refinement) is expected to be a 
distinctive property of trimatrix games and FNCGs with four players (whose 
numbers of pure strategies do not differ much from each other). Another merit is a 
possibility to partially reduce the uncertainty of equilibria by achieving one of 
conditions (30), (33), (35). However, if payoffs are not scattered illogically, even a 
partial reduction may lead to an eventually successful single-metaequilibrium 
refinement. Consider an example of a trimatrix 8 6 3   game (Figure 8) generated by 

(42). This game has five equilibria, four of which are efficient: 

 
4

1q q
E e


   

        15 26 32 18 21 32 18 26 32 18 23 33, , , , , , , , , , ,x x x x x x x x x x x x  

and their respective payoff aggregates are 

 49, 48, 48 ,   49, 47, 49 ,   49, 47, 49 ,   47, 49, 48 . 

Equilibrium  16 21 34, ,x x x  producing payoff aggregate  49, 45, 44  is nonstrictly 

dominated by equilibria  1 2 3, ,e e e . Subsets (7) are 

,  ,  . (46) 

Maximultimin subsets (17) are as follows: 
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45  46  40  48  42  42    45  44  46  41  44  42    49  43  42  41  46  48    46  43  48  46  43  49    48  43  44  43  48  47 
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Figure 8. A stack of three payoff 8 6 3   matrices of a trimatrix 8 6 3   game,  

where efficient payoffs are highlighted bold (the second and third columns referring 

to the respective pure strategies of the third player) 

 

, 

 

, 

 

. 

So, here set (20) is 

    15 26 32 18 26 32, , , , ,R x x x x x x E   (47) 

and case (27) is true. Now, by the superoptimality rule, there is a summing over two 
singletons in (24): 

, 

that still gives us two metaequilibria  15 26 32, ,x x x  and  18 26 32, ,x x x  in set (47) with 

their respective payoffs  49, 48, 48  and  49, 47, 49  (Figure 9). Consequently, this is 

outcome #4 and feature #12, wherein inequality (35) is true 

3

*

1

1 2 4r

r

X R E



  
    
  
 . (48) 
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Despite the superoptimality rule works here in vain, maximultimin allows to have 
reduced the uncertainty of equilibria, according to (48), twice as less. 

44  40  49    43  46  44 

49  49  49    42  47  40 

  

45  40  48    44  40  49 

47  40  47    49  49  49 

  

49  45  48    44  43  48 

49  43  49    42  48  41  

Figure 9. A stack of three 2 3 2   submatrices of matrices in Figure 8,  

which are defined on a product of subsets (46),  
where payoffs at metaequilibria are highlighted squared 

At first view, it seems that the obtained result with two equilibria is not yet 
perfect refinement. However, the first player will not care of either of those two 
equilibria. And, nonetheless, the second player is guaranteed a payoff of 47, and the 
third one is guaranteed a payoff of 48. Furthermore, the second and third players do 
not have a choice. That is a perfect result of decision-making. 

While refining, a researcher should be aware of that both numbers of games 
without pure Nash equilibria and having a single pure Nash equilibrium decrease as 
FNCG (1) gets of a bigger size. At the same time, the number of games having 
multiple efficient equilibria (feature #3) increases up to FNCGs with six players. 
Multiple equilibria are more probable in bigger size games. These factors define 
necessity of refinement, which strengthens for bigger FNCGs. But despite the 
refinement statistics by Figures 3 – 7 are still weakly promising, notice that 
generators (41) – (45) are yet “pessimistic” giving us only integer-valued repetitions 
of a set of payoffs (for instance, see them in Figure 8). Therefore, those percentages 
in the range of successful refinement (58.6 %, ..., 26.1 %) are expected to be higher 
for FNCGs which model real-world practice interactions (such FNCGs have a way less 
repeating payoffs). 

9. Conclusion 

Finding maximultimin subsets (17) and either superoptimality subsets (21) or 
(24) constitute the core of the theory of refining pure strategy efficient Nash 
equilibria in FNCGs under uncertainty. This theory exploits the maximin, expanded 
via the maximinimin to maximultimin principle, and a superoptimality rule wherein 
minimization is substituted with summation. The maximultimin rule guarantees 
definite payoffs for players. The superoptimality rule stands like a backup plan,  
and it is enabled if maximultimin cannot produce just a single refined efficient  
Nash equilibrium (now-called a metaequilibrium). An average effectiveness of 
refinement by maximultimin and superoptimality, which is exemplarily visualized in  
Figures 3 – 7 (for a pessimistic approach analysis), appears satisfactory. 

The theory reckons on dealing with efficient equilibria producing acyclic-and-
asymmetric payoff aggregates. Non-distinguishable equilibria produce identical 
payoff aggregates, and also aggregates with mirror-like symmetry and cyclic 
symmetry. Such equilibria cannot be principally refined. However, this initial 
nonrefinability is quite rare in practice due to payoff matrices are hardly ever 
estimated “symmetrically”. 



Refinement of acyclic-and-asymmetric payoff aggregates of pure efficient Nash equilibria 

197 

Nominally, the stated approach to the refinement is a contribution to the field of 
the equilibria refinement game theory. The contribution still can be advanced for 
cases when the uncertainty amongst the equilibria is reduced only partially, that is 
when one of conditions (30), (33), (35) holds. In a way, the reduction can be 
evaluated as a ratio of the number of initial efficient equilibria to the number of 
metaequilibria. For instance, this ratio is 2 in the example with inequality (48). 

If the refinement fails, a method of finding approximate Nash equilibrium 
situations with possible concessions can be attached and used (Romanuke, 2016b, 
2016a) for the case of situations in pure strategies. For this, the smallest possible 
concessions are to be found to refine equilibria at least partially. At that, both cases 
of refinement fails and non-distinguishable equilibria may be rectified. 
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