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Original scientific paper 

Abstract: A tractable method of solving noncooperative 2-person games in 
which strategies are staircase functions is suggested. The solution is meant to 
be Pareto-efficient. The method considers any 2-person staircase-function 
game as a succession of 2-person games in which strategies are constants. For 
a finite staircase-function game, each constant-strategy game is a bimatrix 
game whose size is sufficiently small to solve it in a reasonable time. It is 
proved that any staircase-function game has a single Pareto-efficient situation 
if every constant-strategy game has a single Pareto-efficient situation, and 
vice versa. Besides, it is proved that, whichever the staircase-function game 
continuity is, any Pareto-efficient situation of staircase function-strategies is a 
stack of successive Pareto-efficient situations in the constant-strategy games. 
If a staircase-function game has two or more Pareto-efficient situations, the 
best efficient situation is found by holding it the farthest from the pair of the 
most unprofitable payoffs.  

Key words: Game theory, payoff functional, Pareto efficiency, staircase-
function strategy, bimatrix game. 

1.  Introduction 

A struggle for optimizing the distribution of limited resources between two sides 
is mathematically formalized and modeled as a noncooperative 2-person game 
(Vorob’yov, 1984; Vorob’yov, 1985; Myerson, 1997; Osborne, 2003). Qualitative 
properties of the 2-person game strongly depend on the sets of the persons’ (players’) 
pure strategies. The properties including payoff attraction are far simpler for the case 
of when the sets are countable. The simplest 2-person game is when the sets are finite. 
In this case, the game is called bimatrix (Vorob’yov, 1958; Moulin, 1981; Harsanyi & 
Selten, 1988). 

The bimatrix game is nonetheless an intricate model of an interaction process. 
Although the interaction process itself is a selection-and-payoff event (or a series of 
such events), not involving any differentiation or integration, the interpretation of the 
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eventual result appears difficult enough. First, the optimality or the best decision 
(solution) has multiple types (Vorob’yov, 1985; Harsanyi & Selten, 1988; Belhaiza et 
al., 2012). This is so because the optimality requires equilibrium, efficiency 
(profitability), and fairness. These types are often contradictory in a 2-person game. 
For instance, an equilibrium situation may be efficient for a player while it is not 
profitable for the other player (thus the respective payoffs are unfair) (Kayı & 
Ramaekers, 2010; Alva & Manjunath, 2020). Second, a bimatrix game may have 
multiple equilibria along with multiple Pareto-efficient situations (Vorob’yov, 1985; 
Romanuke, 2018b; Fu, 2021). This induces the solution uncertainty even if there are 
simultaneously efficient and fair equilibria (Kayı & Ramaekers, 2010; Ke et al., 2021). 
Furthermore, even a bimatrix game may have a continuum of equilibria, wherein the 
best decision selection is far more difficult (Vorob’yov, 1984; Moulin, 1981; Harsanyi 
& Selten, 1988). 

Infinite and, moreover, continuous 2-person games are far more complicated than 
bimatrix (i. e., finite) games. Whereas the bimatrix game has at least an equilibrium 
(generally speaking, in mixed strategies), an infinite game may not have an 
equilibrium or it just is indeterminable (Vorob’yov, 1984; Kontogiannis et al., 2009; 
Osborne, 2003). The best option, therefore, is to deal with a finite 2-person game 
trivially rendered to a bimatrix game (Schelling, 1980; Moulin, 1981; Vorob’yov, 1984; 
Romanuke & Kamburg, 2016; Romanuke, 2020). 

A complication arises as the structure of the player’s pure strategy becomes more 
complex. The most trivial strategy is a decision corresponding to a one-stage event 
whose duration through time is (negligibly) short. However, a strategy can be a multi-
stage process like a staircase-function (of time) defined on a time interval (Kayı & 
Ramaekers, 2010; Zheng et al, 2019; Kim et al, 2019; Li et al, 2020; Ke et al., 2021). In 
a pure strategy situation, a pair of such staircase-function strategies (from both the 
players) is mapped into a real value. When each of the players possesses a finite set of 
such function-strategies, the staircase-function game is easily rendered down to a 
bimatrix game and (tried to be) solved, whichever the solution is (Leyton-Brown & 
Shoham, 2008; Romanuke & Kamburg, 2016; Romanuke, 2020). Such rendering is 
impossible if the set of the player’s function-strategies is either infinite or continuous. 

2.  Motivation 

If the strategy is a time function defined on a closed (time) interval, it is made 
staircase by imposing a natural constraint on the elementary action of a player. In real-
world practice, the continuity of a process is an ill-posed assumption, so any process 
through a definite time interval is a finite set of elementary actions. Thus, a staircase 
function during an elementary action can be considered constant. So the staircase-
function game is formed naturally, where the natural constraint is made of itself by the 
laws of reality (Schelling, 1980; Vorob’yov, 1985; Kayı & Ramaekers, 2010; Romanuke, 
2020; Ke et al., 2021; Fu, 2021). 

To make a staircase-function game finite, the set of possible values of the player’s 
pure strategy should be finite. In such a staircase-function bimatrix game the player’s 
selection of a pure strategy means using a staircase function on a time interval 
whereon every pure strategy is defined. The total number of the player’s pure 
strategies in the staircase-function bimatrix game is determined by the number of 
“stair” subintervals and the number of possible values of the player’s pure strategy 
(staircase function). For example, if the number of subintervals is 6, and the number 

of possible values of the player’s pure strategy is just 5, then there are 65 15625  
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possible pure strategies at this player, where every strategy is a 6-subinterval 5-
staircased function of time. The respective bimatrix 15625 15625  game even in this 

trivialized case appears to be big enough. In a more real example, when every strategy, 
say, is an 8-subinterval 10-staircased function of time, the respective bimatrix 

8 810 10  game appears to be intractably gigantic: a solution cannot be found in a 

reasonable amount of time (and on a reasonably expensive hardware) among 10 
quadrillion situations in such a game. This means that straightforwardly solving 
staircase-function bimatrix games (i. e., 2-person games in staircase-function finite 
spaces) is impracticable. 

Another question is what the solution should be. Although the property of solution 
stability is considered important, the equilibrium in 2-person games often is 
unprofitable for one of the players. For example, in a 2 2  game with payoff matrices  

5 3

4.8 6

 
  
 

K  (1) 

and 

2 2

9 1

 
  
 

H  (2) 

of the first and second players, respectively, there is a single equilibrium with payoffs 

 5, 2 . By the way, this equilibrium is Pareto-efficient. Besides, there are another two 

efficient situations with payoffs  4.8, 9  and  6,1 . Obviously, the first player must 

realize that the second player will definitely stick to one’s first strategy (which, apart 
form being equilibrium strategy, nonstrictly dominates the second strategy). 
However, the first player’s decision to hold to the first strategy would be quite 
unprofitable for the second player. At the same time, the first player loss is only 4 % if 
to select one’s second strategy (and receive 4.8 instead of 5), whereas the second 
player receives 9 (instead of 2). The reasoning does not change if the second player’s 
payoff is any amount above 9 (strictly speaking, the respective situation is efficient if 
only the amount is greater than 2) in matrix (2). This example shows that an 
equilibrium called to keep the property of solution stability may be unstable under 
certain circumstances. Therefore, Pareto-efficient strategies in 2-person games are 
first to be checked. Although they are not formally stable, their stability will likely be 
induced in the way described above. The formal stability of equilibrium is likely to be 
shattered contrariwise. 

3.  Objective and tasks to be fulfilled 

Issuing from the impracticability of straightforwardly solving finite 
noncooperative 2-person games in staircase-function finite spaces, the objective is to 
develop a tractable method of solving such games. The solution is meant to be Pareto-
efficient. For meeting the objective, the following six tasks are to be fulfilled: 

1. To formalize a noncooperative 2-person game, in which the players’ strategies 
are staircase functions of time, whereas the time is discrete. In such a game, the set of 
the player’s pure strategies is a continuum of staircase functions. 

2. To consider the property of Pareto efficiency in a staircase-function game. 
3. To suggest a method of solving finite 2-person staircase-function games (i. e., 

games in staircase-function finite spaces) by using the Pareto-efficiency criterion. 
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4. To give an example of how the suggested method is applied. 
5. To discuss practical applicability and scientific significance of the method. 
6. To make an appropriate conclusion on it. An outlook for furthering the study 

should be made as well. 

4.  A 2-person game defined on a product of functional spaces 

In a noncooperative 2-person game, in which the player’s pure strategy is a 
function, let each of the players use strategies defined almost everywhere on (time) 

interval  1 2;t t  by 2 1t t . Denote a strategy of the first player by  x t  and a strategy of 

the second player by  y t . These functions are presumed to be bounded, i. e. 

 by min maxa a  (3) 

and 

 by min maxb b , (4) 

defined almost everywhere on  1 2;t t . Besides, the square of the function-strategy is 

presumed to be Lebesgue-integrable. Thus, pure strategies of the player belong to a 
rectangular functional space of functions of time: 

 (5) 

and 

 (6) 

are the sets of the players’ pure strategies.  
The first player’s payoff in situation  

    ,x t y t  (7) 

is     ,K x t y t  presumed to be an integral functional (Edwards, 1965; Romanuke, 

2020): 

           
 1 2;

, , ,

t t

K x t y t f x t y t t d t  , (8) 

where  

    , ,f x t y t t  (9) 

is a function of  x t  and  y t  explicitly including t . The second player’s payoff in 

situation (7) is     ,H x t y t  presumed to be an integral functional also: 

           
 1 2;

, , ,

t t

H x t y t g x t y t t d t  , (10) 

where  
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    , ,g x t y t t  (11) 

is a function of  x t  and  y t  explicitly including t  just like (9). Hence, the continuous 

2-person game 

            , , , , ,X Y K x t y t H x t y t  (12) 

is defined on product  

 (13) 

of rectangular functional spaces (5) and (6) of players’ pure strategies. 

5.  A 2-person staircase-function game 

As it has been above-mentioned, the staircase-function game is formed naturally, 
so denote by N  the number of the elementary actions could be made by a player, 

where obviously . In fact, it is the number of “stair” subintervals at which 

the player’s pure strategy is constant. Then the player’s pure strategy is a staircase 
function which may have up to N  different values (but no more than that).  

If  
1

( )

1

N
i

i




  are time points at which the staircase-function strategy changes or may 

change its value, where 

(0) (1) (2) ( 1) ( )

1 2

N Nt t            , (14) 

then  

 ( )i

ix x    and   ( )i

iy y    by 0,i N  (15) 

are the values of pure strategies of the first and second players, respectively. The 
staircase-function strategies are right-continuous (Edwards, 1965):  

   ( ) ( )

0
0

lim i ix x



       and     ( ) ( )

0
0

lim i iy y



       for 1, 1i N   (16) 

by 

   ( ) ( )

0
0

lim i ix x



       and     ( ) ( )

0
0

lim i iy y



       for 1, 1i N  . (17) 

As an exception,  

   ( ) ( )

0
0

lim N Nx x



       and     ( ) ( )

0
0

lim N Ny y



    , (18) 

so 1N Nx x   and 1N Ny y  . Then constant values (15) by (14) mean that game (12) is 

a 2-person staircase-function game. The staircase-function game can be thought of as 
it is a succession of N  continuous games 
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         min max min max; , ; , , , ,i i i ia a b b K H     (19) 

each defined on rectangle 

   min max min max; ;a a b b  (20) 

by  

   min max;i x t a a    and    min max;i y t b b     

( 1) ( );i it      for 1, 1i N   and ( 1) ( );N Nt       , (21) 

where the factual first player’s payoff in situation  ,i i   is 

     
( 1) ( );

, , ,

i i

i i i iK f t d t

 


        1, 1i N    (22) 

and 

     
( 1) ( );

, , ,

N N

N N N NK f t d t

  
 

      , (23) 

and the factual second player’s payoff in situation  ,i i   is 

     
( 1) ( );

, , ,

i i

i i i iH g t d t

 


        1, 1i N    (24) 

and 

     
( 1) ( );

, , ,

N N

N N N NH g t d t

  
 

      . (25) 

The payoff in situation  ,i i   can be thought of as it is the payoff on a “stair” 

subinterval i , which is ( 1) ( );i i   for 1, 1i N    and ( 1) ( );N N     (when i N ).  

A pure-strategy situation in the staircase-function game (12) is a succession of N  

situations   
1

,
N

i i i
   in games (19). 

Theorem  1. In a pure-strategy situation of the staircase-function game (12), 

represented as a succession of N  continuous games (19), functionals (8) and (10) are 
re-written as subinterval-wise sums. 

 

      
1

, ,

N

i i

i

K x t y t K



     

   


   
( 1) ( )( 1) ( )

1

1 ;;

, , , ,

N Ni i

N

i i N N

i

f t d t f t d t





     
 

           (26) 
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and 

      
1

, ,

N

i i

i

H x t y t H



     

   


   
( 1) ( )( 1) ( )

1

1 ;;

, , , ,

N Ni i

N

i i N N

i

g t d t g t d t





     
 

          , (27) 

respectively. 

Proof. Each of functions (9) and (11) in situation  ,i i   by (19) is some function 

of time t . Thus, denote a function corresponding to (9) by  i t . For situation  ,i i   

on half-subinterval ( 1) ( );i i   by 1, 1i N   function  

  0i t   ( 1) ( );i it     , (28) 

and for situation  ,N N   on subinterval ( 1) ( );N N     function  

  0N t   ( 1) ( );N Nt       . (29) 

Therefore,  

      
1

, ,

N

i

i

f x t y t t t



   (30) 

in a pure-strategy situation     ,x t y t  of the staircase-function game (9), by using 

(29) and (30). Consequently,  

           
 1 2;

, , ,

t t

K x t y t f x t y t t d t    

   


   
( 1) ( )( 1) ( )

1

1 ;;
N Ni i

N

i N

i

t d t t d t





     
 

          

   


   
( 1) ( )( 1) ( )

1

1 ;;

, , , ,

N Ni i

N

i i N N

i

f t d t f t d t





     
 

            

 
1

,

N

i i

i

K



    (31) 

in a pure-strategy situation     ,x t y t  of the staircase-function game (9). Obviously, 

subinterval-wise sum (27) is proved similarly to (28) — (31).              

It is clear that Theorem 1, although not providing a method of solving the staircase-
function game, simplifies it. In payoff terms, Theorem 1 allows considering each game 

(19) separately. The stack of successive situations   
1

,
N

i i i
   is a (staircase) situation 

in the respective 2-person staircase-function game (12). 
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6.  When a Pareto-efficient stack is single 

The occurrence when every subinterval 2-person game has a single Pareto-
efficient situation is rare. The likelihood of such an occurrence even for finite staircase-
function games is roughly less than 1 %. Nevertheless, there is an interesting assertion 
addressed to this case. 

Theorem 2. If each of N  games (19) by (14) — (18) and (20) — (25) has a single 
Pareto-efficient situation, then the respective 2-person staircase-function game (12) 
has a single Pareto-efficient situation, which is the stack of successive Pareto-efficient 
situations in games (19). 

Proof. Let  * *,i i   be the single efficient situation in the game on “stair” subinterval 

i . This implies that both a pair of inequalities 

 (32) 

and 

   * *, ,i i i iH H      (33) 

and a pair of inequalities  

   * *, ,i i i iK K      (34) 

and 

 (35) 

are impossible for any  min max;i a a   and  min max;i b b  . In other words, inequalities 

(32) and (33) are simultaneously impossible, and inequalities (34) and (35) are 

simultaneously impossible as well. Suppose that  (0)

min max;i a a   and 

 (0)

min max;i b b   such that 

   (0) (0) * *, ,i i i iK K     . (36) 

Inequality (36) implies that inequality 

   (0) (0) * *, ,i i i iH H      (37) 

must hold because otherwise situation  * *,i i   will not be efficient. However, 

inequalities (36) and (37) imply that situation  (0) (0),i i   is efficient, which is 

impossible due to  * *,i i   is the single efficient situation. Therefore, inequality (34) is 

impossible, and impossibility of the remaining inequalities (32), (33), (35) is proved 
similarly.  

As inequalities (32) — (35) are impossible for every 1,i N  then each of the 

inequalities  



Pareto-efficient strategies in 2-person games in staircase-function continuous and finite spaces 

35 

, (38) 

   * *

1 1

, ,

N N

i i i i

i i

H H

 

      , (39) 

   * *

1 1

, ,

N N

i i i i

i i

K K

 

      , (40) 

 (41) 

for any  min max;i a a   and  min max;i b b   is impossible as well. By the efficiency 

definition, owing to Theorem 1, this implies that stack   * *

1
,

N

i i
i

   is a Pareto-efficient 

situation in the respective 2-person staircase-function game (12). 
Suppose that there is another stack which is also Pareto-efficient. Consider the case 

when 2N  . First, let stack 

    (0) * * *

1 1 2 2, , ,     (42) 

be a Pareto-efficient situation by (0) *

1 1   . This implies that both a pair of inequalities 

 (43) 

and 

       (0) * * *

1 1 2 2 1 1 2 2, , , ,H H H H            (44) 

and a pair of inequalities  

       (0) * * *

1 1 2 2 1 1 2 2, , , ,K K K K            (45) 

and 

 (46) 

are impossible for any  min max;i a a   and  min max;i b b   by 1i   and 2i  . Plugging 

*

2 2    and *

2 2    in the left sides of inequalities (43) — (46) gives a pair of 

inequalities 

, (47) 

   (0) *

1 1 1 1, ,H H      (48) 

and a pair of inequalities  

   (0) *

1 1 1 1, ,K K     , (49) 

. (50) 
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If pairs (47), (48) and (49), (50) are impossible then situation  (0) *

1 1,   must be 

efficient. Therefore, the supposition about Pareto-efficiency of situation (42) is 
contradictory. 

Second, let stack 

    (0) (0) * *

1 1 2 2, , ,     (51) 

be a Pareto-efficient situation by (0) *

1 1    and (0) *

1 1   . This implies that both a pair 

of inequalities 

 (52) 

and 

       (0) (0) * *

1 1 2 2 1 1 2 2, , , ,H H H H            (53) 

and a pair of inequalities  

       (0) (0) * *

1 1 2 2 1 1 2 2, , , ,K K K K            (54) 

and 

. (55) 

Plugging *

2 2    and *

2 2    in the left sides of inequalities (52) — (55) gives a pair 

of inequalities 

, (56) 

   (0) (0)

1 1 1 1, ,H H      (57) 

and a pair of inequalities  

   (0) (0)

1 1 1 1, ,K K     , (58) 

. (59) 

If pairs (56), (57) and (58), (59) are impossible then situation  (0) (0)

1 1,   must be 

efficient. Therefore, the supposition about Pareto-efficiency of situation (51) is also 
contradictory. 

The Pareto-efficiency impossibility of other versions of 2-subinterval stacks is 
proved symmetrically. The Pareto-efficiency impossibility of N -subinterval stacks by 

 is proved similarly by ascending induction.              

So, if each of the subinterval 2-person games has a single Pareto-efficient solution, 
Theorem 2 allows finding the Pareto-efficient solution of the respective 2-person 
staircase-function game in a very simple way, just by stacking the subinterval 
solutions. It is easy to see that the assertion of Theorem 2 is reversible.  

Theorem 3. If a 2-person staircase-function game (12) has a single Pareto-efficient 

situation, then each of the respective N  games (19) by (14) — (18) and (20) — (25) 
has a single Pareto-efficient situation. 
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Proof. Let stack   * *

1
,

N

i i
i

   be a single Pareto-efficient situation in a 2-person 

staircase-function game (12). This implies that both the pair of inequalities (38), (39) 

and the pair of inequalities (40), (41) are impossible for any  min max;i a a   and 

 min max;i b b  . Plugging *

k k    and *

k k    2,k N   in the left sides of 

inequalities (38) — (41) gives a pair of inequalities 

, (60) 

   * *

1 1 1 1, ,H H      (61) 

and a pair of inequalities  

   * *

1 1 1 1, ,K K     , (62) 

, (63) 

where the pair of (60) and (61) is impossible, and the pair of (62) and (63) is 

impossible as well. Hence, situation  * *

1 1,   is efficient. The efficiency of the 

remaining subinterval situations is proved in the same way.  

Suppose that, along with efficient situation  * *

1 1,  , situation  (0) (0)

1 1,   is 

efficient also. Thus, neither the pair of inequalities (56), (57), nor the pair of 
inequalities (58), (59) is possible. Stack 

     (0) (0) * *

1 1
2

, , ,
N

i i
i

     (64) 

must not be efficient. This implies that a pair of inequalities  

, (65) 

       (0) (0) * * * *

1 1 1 1

2 2

, , , ,

N N

i i i i

i i

H H H H

 

             (66) 

holds or a pair of inequalities  

       (0) (0) * * * *

1 1 1 1

2 2

, , , ,

N N

i i i i

i i

K K K K

 

            , (67) 

 (68) 

holds. Plugging *

k k    and *

k k    2,k N   in the left sides of inequalities 

(65) — (68) gives a pair of inequalities 

, (69) 

   (0) (0) * *

1 1 1 1, ,H H      (70) 

and a pair of inequalities  
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   (0) (0) * *

1 1 1 1, ,K K     , (71) 

. (72) 

The possibility of either the pair of (69), (70) or the pair of (71), (72) means that 

situation  (0) (0)

1 1,   is not efficient. Such a contradiction is similarly proved for any 

other subinterval situation. 

Without losing generality, suppose that, along with efficient situations  * *

1 1,   and 

 * *,k k   by  2,k N , situations  (0) (0)

1 1,   and  (0) (0),k k   are efficient also. Then, 

anyway, stack (64) must not be efficient, which is the contradiction due to (65) — (72). 
Such a contradiction is similarly proved for any other combinations of subinterval 
situations.              

So, Theorem 3 asserts that when a Pareto-efficient stack is single, it does directly 
mean that every subinterval 2-person game must have a single Pareto-efficient 
situation. The question about multiple Pareto-efficient stacks is cleared right below. 

7.  What a Pareto-efficient stack consists of 

It is easy to show that a finite 2-person staircase-function game (12) may have 
multiple Pareto-efficient situations. For example, a game with 2-subinterval 2-
staircased function-strategies at the first player and 2-subinterval 3-staircased 
function-strategies at the second player, represented with respective matrices 

1

9 5 2

5 5 8

 
  
 

K ,  2

1 7 2

5 7 1

 
  
 

K  (73) 

and 

1

8 5 0

1 14 3

 
  
 

H ,  2

6 3 1

9 0 1

 
  
 

H , (74) 

has 3 Pareto-efficient situations. They are the stack of efficient situations with payoffs 

 9, 8  and  7, 3 , the stack of efficient situations with payoffs  9, 8  and  5, 9 , and 

the stack of efficient situations with payoffs  5,14  and  5, 9 . By the way, the stack 

of efficient situations with payoffs  5,14  and  7, 3  is not an efficient situation. 

Indeed, whereas the efficient (stacked) situations produce payoffs  16,11 ,  14,17 , 

 10, 23 , the non-efficient stack produce payoffs  12,17 . Obviously, a continuous 2-

person staircase-function game may have multiple Pareto-efficient situations as well. 
Theorem 4. Any Pareto-efficient situation in a 2-person staircase-function game 

(12) is a stack of successive Pareto-efficient situations in games (19) by (14) — (18) 
and (20) — (25). 

Proof. Let stack   * *

1
,

N

i i
i

   be a Pareto-efficient situation in the respective 2-

person staircase-function game (12), where  * *,i i   is a Pareto-efficient situation in 
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the game on “stair” subinterval i . Suppose that situation  (0) (0)

1 1,   is not efficient in 

game (19) on the first “stair” subinterval, but stack (64) is an efficient situation in 
staircase-function game (12). Then a pair of inequalities  

       (0) (0) * * * * * *

1 1 1 1

2 2

, , , ,

N N

i i i i

i i

K K K K

 

             (75) 

and  

       (0) (0) * * * * * *

1 1 1 1

2 2

, , , ,

N N

i i i i

i i

H H H H

 

             (76) 

must hold, or a pair of inequalities 

       (0) (0) * * * * * *

1 1 1 1

2 2

, , , ,

N N

i i i i

i i

K K K K

 

             (77) 

and 

       (0) (0) * * * * * *

1 1 1 1

2 2

, , , ,

N N

i i i i

i i

H H H H

 

             (78) 

must hold, or just 

       (0) (0) * * * * * *

1 1 1 1

2 2

, , , ,

N N

i i i i

i i

K K K K

 

            , (79) 

       (0) (0) * * * * * *

1 1 1 1

2 2

, , , ,

N N

i i i i

i i

H H H H

 

            . (80) 

Inequalities (75) — (78) give a pair of inequalities 

   (0) (0) * *

1 1 1 1, ,K K      (81) 

and (70) and a pair of inequalities (71) and  

   (0) (0) * *

1 1 1 1, ,H H     . (82) 

The pair of inequalities (81), (70) or the pair of inequalities (71), (82) means that 

situation  (0) (0)

1 1,   is efficient. Besides, the pair of equalities (79) and (80) gives a 

pair of equalities 

   (0) (0) * *

1 1 1 1, ,K K     , (83) 

   (0) (0) * *

1 1 1 1, ,H H     . (84) 

These contradictions implying that stack (64) cannot be efficient are similarly proved 
for any other subinterval situation. 

Suppose now that situations  (0) (0)

1 1,   and  (0) (0)

2 2,   are not efficient in the first 

two subinterval games, but stack 
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       (0) (0) (0) (0) * *

1 1 2 2
3

, , , , ,
N

i i
i

       (85) 

is an efficient situation in staircase-function game (12). Then a pair of inequalities  

     (0) (0) (0) (0) * *

1 1 2 2

3

, , ,

N

i i

i

K K K



          

     * * * * * *

1 1 2 2

3

, , ,

N

i i

i

K K K



         , (86) 

     (0) (0) (0) (0) * *

1 1 2 2

3

, , ,

N

i i

i

H H H



          

     * * * * * *

1 1 2 2

3

, , ,

N

i i

i

H H H



          (87) 

must hold or a pair of inequalities  

     (0) (0) (0) (0) * *

1 1 2 2

3

, , ,

N

i i

i

K K K



          

     * * * * * *

1 1 2 2

3

, , ,

N

i i

i

K K K



         , (88) 

     (0) (0) (0) (0) * *

1 1 2 2

3

, , ,

N

i i

i

H H H



          

     * * * * * *

1 1 2 2

3

, , ,

N

i i

i

H H H



          (89) 

must hold, or just 

     (0) (0) (0) (0) * *

1 1 2 2

3

, , ,

N

i i

i

K K K



          

     * * * * * *

1 1 2 2

3

, , ,

N

i i

i

K K K



         , (90) 

     (0) (0) (0) (0) * *

1 1 2 2

3

, , ,

N

i i

i

H H H



          

     * * * * * *

1 1 2 2

3

, , ,

N

i i

i

H H H



         . (91) 

Inequalities (86) — (89) give a pair of inequalities 

       (0) (0) (0) (0) * * * *

1 1 2 2 1 1 2 2, , , ,K K K K           , (92) 

       (0) (0) (0) (0) * * * *

1 1 2 2 1 1 2 2, , , ,H H H H            (93) 

and a pair of inequalities  
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       (0) (0) (0) (0) * * * *

1 1 2 2 1 1 2 2, , , ,K K K K           , (94) 

       (0) (0) (0) (0) * * * *

1 1 2 2 1 1 2 2, , , ,H H H H           . (95) 

As either of situations  (0) (0)

1 1,   and  (0) (0)

2 2,   is not efficient, then either a pair of 

inequalities (69), (70), or a pair of inequalities (71), (72) holds, and either a pair of 
inequalities  

, (96) 

   (0) (0) * *

2 2 2 2, ,H H     , (97) 

or a pair of inequalities  

   (0) (0) * *

2 2 2 2, ,K K     , (98) 

 (99) 

holds. After summing up inequalities (69) and (96), (71) and (98), (70) and (97), (72) 
and (99) sidewise, there is a pair of true inequalities 

 (100) 

and 

 (101) 

contradicting both pairs (92), (93) and (94), (95). These contradictions implying that 
stack (85) cannot be efficient are similarly proved for any other two or more (by 
ascending induction) situations.              

It is worth to note that Theorem 4 does not mean that any stack of successive 
efficient situations will be efficient. However, Theorem 4 does mean that if every 
subinterval (continuous) game has a finite number of Pareto-efficient situations, then 
all the Pareto-efficient situations in the respective 2-person staircase-function game 
(12) can be determined by just running over all possible stacks (whose number is 
finite) and selecting such stacks  

  * *

1
,

N

i i
i

    

for which both the pair of inequalities (38), (39) and the pair of inequalities (40), (41) 

are impossible for any  min max;i a a   and  min max;i b b  . 

8.  Solving a finite 2-person staircase-function game 

In a finite 2-person staircase-function game, players (forcedly or deliberately) act 
within a finite subset of possible values of their pure strategies. That is, these values 
are 

(0) (1) (2) ( 1) ( )

min max

M Ma a a a a a a        (102) 
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and 

(0) (1) (2) ( 1) ( )

min max

Q Qb b b b b b b        (103) 

for the first and second players, respectively, where  and  (i. e., the 

player’s function-strategy must have at least two different values). Then the 
succession of N  continuous games (19) by (14) — (18) and (20) — (25) becomes a 

succession of N  bimatrix games 

      
1 1

( 1) ( 1)

1 1
, , ,

M Q
m q

i i
m q

a b
 

 

 
K H  (104) 

with first player’s payoff matrices  

   1 1i imq M Q
k

  
   K   

whose elements are 

     
( 1) ( )

( 1) ( 1) ( 1) ( 1)

;

, , ,

i i

m q m q

imqk K a b f a b t d t



   

 


     for  1, 1i N   (105) 

and 

     
( 1) ( )

( 1) ( 1) ( 1) ( 1)

;

, , ,

N N

m q m q

Nmqk K a b f a b t d t



   

  
 

   , (106) 

and with second player’s payoff matrices  

   1 1i imq M Q
h

  
   H   

whose elements are 

     
( 1) ( )

( 1) ( 1) ( 1) ( 1)

;

, , ,

i i

m q m q

imqh H a b g a b t d t



   

 


     for  1, 1i N   (107) 

and 

     
( 1) ( )

( 1) ( 1) ( 1) ( 1)

;

, , ,

N N

m q m q

Nmqh H a b g a b t d t



   

  
 

   , (108) 

for 1, 1m M   and 1, 1q Q  . 

Let  * *,
i iij ij   be an efficient situation in bimatrix game (104), where  1,i ij J  

and . So, bimatrix game (104) has iJ  efficient situations. It is unknown whether 

“participation” of situation  * *,
i iij ij   in a stack makes the stack efficient or not. Let 

  * *

1
,

i i

N

ij ij
i

   (109) 

be a stack in a 2-person staircase-function game, which is the succession of N  
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bimatrix games (104),  

 
1

* ( 1)

1i

M
m

ij
m

a





  ,  

1
* ( 1)

1i

Q
q

ij
q

b





  .  

Thus, stack (109) produces payoffs 

     * * * * * *

1 1

, , , ,
i i i i

N N

l l ij ij ij ij

i i

u v K H

 

  
     
  
    by  

1

1,

N

i

i

l J



  . (110) 

Let L  be the number of efficient stacks, where  

1

1,

N

i

i

L J



 
 

 
  
 .  

It is worth to remember that the case of when 1L   is only possible if 1iJ   

1,i N   (see Theorem 3). Without losing generality, presume that namely the first 

L  payoffs in (110) are produced by the efficient stacks (for instance, this can be done 
after sorting all the possible stacks just by separating the efficient from the non-
efficient stacks). The best efficient stack can be found by a method suggested in 
(Romanuke, 2018a): 

2 2
* * * *

1, 1,

* * * * *
1,

1, 1,1, 1,

min min
argmax

max min max min

l z l z
z L z L

l L
z z z z

z L z Lz L z L

u u v v
l

u u v v

 



  

    
    
    
   

, (111) 

so the *l -th stack is the best and the respective efficient payoffs  
* *

* *,l lu v  are the most 

appropriate. Indeed, in terms of 0-1-standardization, they are the farthest from the 

zero payoffs  0, 0  (the most unprofitable payoffs). 

Consider an example case in which  0.8 ; 2.8t   , the set of pure strategies of the 

first player is 

 (112) 

and the set of pure strategies of the second player is 

           5

1
, 0.8 ; 2.8 : 4.5 0.5 1 4.5; 6.5

q
Y y t t y t q


           

, (113) 

where values of the pure strategies can change only at time points  

   
9 9( )

11
0.8 0.2i

ii
i


    . (114) 

The first player’s payoff functional is 

      
 

0.05

0.8 ; 2.8

7
, sin 0.65

9

xtK x t y t xyt e d t

 

 
   

   (115) 
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and the second player’s payoff functional is 

      
 

0.01

0.8 ; 2.8

6
, sin 0.15

7

ytH x t y t xyt e d t

 

 
   

  . (116) 

Consequently, this game can be thought of as it is defined on rectangular lattice 

        
57

1 1
1 4.5 0.5 1 2; 8 4.5; 6.5

m q
m q

 
       , (117) 

that is this game is a succession of 10 finite 7 5  (bimatrix) games 

      
7 5

( 1) ( 1)

1 1
, , ,m q

i i
m q

a b 

 
K H  

       
57

1 1
1 , 4.5 0.5 1 , ,i im q

m q
 

     K H  (118) 

with first player’s payoff matrices  

 
10

7 5 1
i imq

i
k

 

   K   

whose elements are 

   
  

( 1) ( 1)

0.8 0.2 1 ; 0.8 0.2

, ,m q

imq

i i

k f a b t d t 

      

    

    
  0.8 0.2 1 ; 0.8 0.2

1 , 4.5 0.5 1 ,

i i

f m q t d t

      

        

      
  

0.05 1

0.8 0.2 1 ; 0.8 0.2

7
sin 0.65 1 4 0.5

9

m t

i i

m q t e d t


      

 
      

     

for  1, 9i   (119) 

and 

      
 

0.05 1

10

2.6 ; 2.8

7
sin 0.65 1 4 0.5

9

m t

mqk m q t e d t


 

 
      

  , (120) 

and with second player’s payoff matrices  

 
10

7 5 1
i imq

i
h

 

   H   

whose elements are 

   
  

( 1) ( 1)

0.8 0.2 1 ; 0.8 0.2

, ,m q

imq

i i

h g a b t d t 

      

    

    
  0.8 0.2 1 ; 0.8 0.2

1 , 4.5 0.5 1 ,

i i

g m q t d t

      

        

      
  

0.01 4 0.5

0.8 0.2 1 ; 0.8 0.2

6
sin 0.15 1 4 0.5

7

q t

i i

m q t e d t


      

 
      

     



Pareto-efficient strategies in 2-person games in staircase-function continuous and finite spaces 

45 

for  1, 9i   (121) 

and 

      
 

0.01 4 0.5

10

2.6 ; 2.8

6
sin 0.15 1 4 0.5

7

q t

mqh m q t e d t


 

 
      

  . (122) 

The 10 bimatrix 7 5  games (118) with (119) — (122) have 3, 1, 2, 3, 1, 4, 5, 4, 4, 

5 Pareto-efficient situations, respectively. Therefore, there are 28800 stacks of such 
situations. The respective 2-person staircase-function game by (112) — (116) has 67 
Pareto-efficient stacks presented in Figure 1, wherein a scatter plot (or, rather a cloud) 
of 28800 stack payoffs  

 

Figure 1. A scatter plot of 28800 stack payoffs in the finite 2-person  

staircase-function game and 67 payoffs (circles) by the efficient stacks  

(the best efficient payoffs point is squared) 
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     
10 10

* * * * * *

1 1

, , , ,
i i i il l ij ij ij ij

i i

u v K H

 

  
     
  
    by  1, 28800l   

can be seen as well. The single best efficient payoffs point calculated by (111) as 

2 2
* * * *

1, 67 1, 67

* * * * *
1, 67

1, 67 1, 671, 67 1, 67

min min
argmax

max min max min

l z l z
z z

l
z z z z

z zz z

u u v v
l

u u v v

 



  

    
    
    
   

 

corresponds to the best Pareto-efficient situation, whose first player’s strategy  *x t  

is shown in Figure 2 and second player’s strategy  *y t  is shown in Figure 3. The best 

efficient payoffs are 

     
* *

* * * *

1 1, , 7.376179, 3.100085l lu v u v  . 

Note that * 1l   is just an occasion of that among those 67 Pareto-efficient situations 

the best one appeared to be first. They are not sorted in any order. 

 

Figure 2. The best efficient staircase-function strategy of the first player 

 

Figure 3. The best efficient staircase-function strategy of the second player 

The example clearly shows that seeking for the efficiency in a finite noncooperative 
2-person staircase-function game is an extremely hard task, which is only possible to 
accomplish by considering the respective succession of bimatrix games. Another, 
concomitant, task is the selection of the best Pareto-efficient situation among L  
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Pareto-efficient situations. This concomitant task exists when the conditions of 
Theorem 2 do not hold.  

9.  Discussion 

Surely, in most cases, a subinterval 2-person game will have multiple Pareto-
efficient situations. This does not diminish the value of Theorem 2. Its proof, by the 
way, directly follows from Theorem 4. The assertion of Theorem 3 is more peculiar 
and has a definite practical impact: if it is known that a staircase-function game has a 
single Pareto-efficient situation then its search is organized by the principle of the 
early stop — once an efficient situation in a subinterval 2-person game is found, the 
next subinterval game is solved. 

So, the core of the method of solving 2-person games in staircase-function (finite 
or infinite, continuous) spaces consists in finding all Pareto-efficient situations in 
every subinterval 2-person game or proving that a subinterval game has a single 
efficient situation. The computation time depends on the “length” of the staircase-
function game (i. e., on the number of subintervals). If the subinterval game is finite, 
its size influences the computation time also. The size is defined by the sets of possible 
values of players’ pure strategies. In particular cases, obviously, solving a continuous 
subinterval game may cause considerable delay or be just intractable itself. Then the 
continuous subinterval game must be approximated with a finite (i. e., bimatrix) game 
using the known techniques (Romanuke & Kamburg, 2016). 

Unfortunately, there is no universal method to finding all Pareto-efficient 
situations in a continuous (or infinite) 2-person game. Therefore, the finite 
approximation may become an intermediate in solving a staircase-function game. This 
is a factual transition to a finite staircase-function game. 

The suggested method is a significant contribution to the mathematical 2-person 
game theory and practice for avoiding too complicated solutions resulting from game 
continuities, functional pure strategy spaces, and uncertainty in implementing 
equilibrium, profitability, fairness. The method is practically applicable owing to its 
tractability and simplicity. Owing to dealing with pure strategies only, it fits 
nonrepeatable games as well. Thus, the suggested method significantly simplifies 2-
person games in staircase-function continuous and finite spaces by just 
“deeinstellungizing” them, similarly to preventing Einstellung effect in modeling 
(Loesche & Ionescu, 2020; Romanuke, 2020). 

10.  Conclusion 

A finite noncooperative 2-person game in which strategies are staircase functions 
can be rendered to a bimatrix game, but it can hardly be solved straightforwardly due 
to a gigantic number of pure-strategy situations. The best way is to consider any 2-
person staircase-function game as a succession of 2-person games in which strategies 
are constants. For a finite staircase-function game, each constant-strategy game is a 
bimatrix game whose size is sufficiently small to solve it in a reasonable time. For a 
continuous (infinite) staircase-function game, where the player has a continuum 
(infinity) of staircase function-strategies, each constant-strategy game is a classical 
continuous (infinite) 2-person game. Whichever the staircase-function game 
continuity is, any Pareto-efficient situation of staircase function-strategies is a stack of 
successive Pareto-efficient situations in the constant-strategy games (Theorem 4). The 
staircase-function game has a single Pareto-efficient situation if every constant-
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strategy game has a single Pareto-efficient situation (Theorem 2), and vice versa 
(Theorem 3). If a staircase-function game has two or more Pareto-efficient situations, 
the best efficient situation is found by holding it the farthest from the pair of the most 
unprofitable payoffs. This is fulfilled by just solving problem (111). 

A similar question of finding the best efficient situation for games in staircase-
function continuous and finite spaces should be studied for the case of three players. 
Then the presented assertions and conclusions might be just adapted to trimatrix and 
continuous (infinite) 3-person games, which model processes of practically optimizing 
the limited resources distribution among three sides as well as 2-person games do for 
two sides. Furthermore, the case with efficient Nash equilibria in staircase function-
strategies would be quite interesting. 
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