
Decision Making: Applications in Management and Engineering  
Vol. 6, Issue 1, 2023, pp. 341-364. 
ISSN: 2560-6018 
eISSN: 2620-0104  

 DOI: https://doi.org/10.31181/dmame0306102022r 

* Corresponding author. 
 E-mail addresses: sadhu.tithli@gmail.com (T. Sadhu),  sc.19ch1103@phd.nitdgp.ac.in 
(S. Chowdhury), shubhammondal1999@outlook.com (S. Mondal), jroy@nitw.ac.in (J. Roy), 
jitamanyu.chakrabarty@ch.nitdgp.ac.in (J. Chakrabarty), sandipkumar.lahiri@che.nitdgp.ac.in 
(S.K.. Lahiri) 

A COMPARATIVE STUDY OF METAHEURISTICS 
ALGORITHMS BASED ON THEIR PERFORMANCE OF 

COMPLEX BENCHMARK PROBLEMS 

Tithli Sadhu1,2, Somanth Chowdhury3, Shubham Mondal4, Jagannath 
Roy5, Jitamanyu Chakrabarty1 and Sandip Kumar Lahiri3* 

1Department of Chemistry, National Institute of Technology, Durgapur, West Bengal, 
India  

2Department of Biochemistry, School of Agriculture, SR University, Hanumakonda, 
Telangana, India 

3Department of Chemical Engineering, National Institute of Technology, Durgapur, 
West Bengal, India 

4Department of Computer Science and Engineering, Institute of Engineering and 
Management, Kolkata, West Bengal, India 

5Department of Mathematics, National Institute of Technology, Warangal, Telangana, 
India 

 
Received: 12 February 2022;  
Accepted: 18 September 2022;   
Available online: 6 October 2022. 

Original scientific paper 
Abstract: Metaheuristic approaches with significant improvements are very 
promising in the solution of intractable optimization problems. The objective 
of the present study is to test the capability of applications and compare 
performance of the four selected algorithms from “classical” (simulated 
annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), 
and differential evolution (DE)) and “new generation” (firefly algorithm 
(FFA), krill herd (KH), grey wolf optimization (GWO), and symbiotic 
organism search (SOS)) each by solving selected benchmark problems. SOS 
and KH algorithm successfully solved most of all the selected problems by 
achieving the best solution in minimum execution time. On the other hand, 
DE, and PSO also effectively attained the optimal solution which were very 
close to the best one. Therefore, no firm conclusion can be done about the 
universally best algorithm and their performance may be varied for different 
benchmark problems. However, “new generation” algorithm exhibited the 
most promising result and great potential than the “classical” one. This study 
gives some insights to use SOS and KH as best performing algorithm to the 
novice user who can easily get lost by the plethora of large number of 
optimization algorithms. 

Key words: Metaheuristic, Algorithms, Optimization, Performance, 
Benchmark problems 
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1. Introduction 

Optimization in every field of Science and Technology recently gets attention to 
the researchers as resources, energies are getting limited day by day. Optimization 
refers to a procedure to get a balance between two or more conflicting objectives 
with respect to design variables under several conditions and restrictions on them 
(Rangaiah, 2010). Due to the complexity of modern technologies, the objective 
function and associated constraints are very complex in real-life applications. 
Gradient-based classical optimization algorithms often trap in local optima of this 
complex objective function and cannot find the global optima. To overcome the 
limitation of gradient-based algorithms, metaheuristic, stochastic approaches are 
introduced. These algorithms have a random component included in their execution 
which helps them to escape from local minima. There is an iterative computational 
technique at the heart of these metaheuristic algorithms that selects an optimal 
solution iteratively and tries to enhance a candidate solution with regard to a 
particular measure of quality (Wang & Chen, 2013). In the recent studies, it is 
referred as nature inspired “metaheuristic” that means the higher level of heuristic 
that are applied to solve a wide variety of optimization problems. The main 
advantage of using this metaheuristic algorithm is that it allows the decision makers 
to obtain near optimal solutions within a relatively shorter period of time even for 
large size complex problems because of their efficient performance ability 
(Dokeroglu et al., 2019). Many complex optimization problems with a large variance, 
ranging from single to multi-objective, constrained to unconstrained, continuous to 
discrete, can be solved by a practical and elegant way using metaheuristic 
approaches (Dokeroglu et al., 2019).  

The majority of state-of-the-art metaheuristic has been created prior to the year 
2000 and in this article these can be termed as “classical” metaheuristic algorithms 
(Dokeroglu et al., 2019). Some of the major examples of classical algorithms are: 
Simulated Annealing (SA) (Kirkpatrick et al., 1983), Genetic Algorithm (GA) 
(Goldberg, 1989), Ant Colony Optimization (Dorigo & Di Caro, 1999), Particle Swarm 
Optimization (Kennedy & Eberhart, 1995), Differential Evolution (DE) (Storn & Price, 
1997), Chaos Optimization Method (COM) (Li & Jiang, 1997), Variable Neighborhood 
Search (VNS) (Mladenović & Hansen, 1997), Genetic Programming (GP) (Banzhaf et 
al., 1998), Tabu search (TS) (Glover & Laguna, 1998), Greedy Randomized Adaptive 
Search Procedure (GRASP) (Marques-Silva & Sakallah, 1999), etc. These algorithms 
are widely used in almost every field of science and technology and proven to be very 
versatile. The main advantages of the “classical” metaheuristic algorithms as 
reported in literature are: (1) low execution time (processing time of the program) 
for large and complex problems, (2) their ability to escape local optima and high 
probability to getting global optima solutions (Beheshti & Shamsuddin, 2013). 
Despite the huge success rate of classical metaheuristic algorithms in diverse field, 
new generation evolutionary algorithms also developed magnificently in last twenty 
years improving their performance and execution time. Recently, researcher find out 
that nature itself has many efficient optimization processes. Various species in 
nature such as, birds, fish etc. possesses very effective optimization capabilities. 
From year 2000 to till now, researchers focused on evolutionary or behavioral 
processes seen in nature and try to mimic them in mathematical algorithms. These 
give rise the development of new generation, nature-inspired metaheuristic 
algorithms that can solve all complex real-world problems and acquire the more 
practical optimal solution in very short execution time compare to “classical” one for 
some unsolved benchmark problem sets in all perspective, even for very large 
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problem size (Dokeroglu et al., 2019). Some major examples of “new generation” 
metaheuristic algorithms are Harmony Search (HS) (Geem et al., 2001), Artificial Bee 
Colony (ABC) (Karaboga, 2005), Bacterial Foraging Optimization (BFO) (Das et al., 
2009), Cuckoo Search  (CS) (Yang & Deb, 2009), Firefly Algorithm (FFA) (Yang, 
2010a), Bat Algorithm (BA) (Yang, 2010b), Krill Herd (KH) (Gandomi & Alavi, 2012), 
Grey Wolf Optimization (GWO) (Mirjalili et al., 2014), Symbiotic Organism Search 
(SOS) (Cheng & Prayogo, 2014), Whale Optimization (WOA) (Mirjalili & Lewis, 2016) 
etc. A schematic representation of development of both “classical” and “new 
generation” metaheuristic optimizations (year-wise) is represented in Figure 1(a) 
and (b), respectively.  

Due to the availability of large number of metaheuristic algorithms, the novice 
researchers get confused about the selection of efficient algorithm to solve hard and 
complex problems. Now-a-days, new algorithm is developed every month and is 
claimed to be the best among the existing one. However, when the algorithms are 
applied to a new objective function, this claim is not substantiated. This necessitates 
making comparison of different old and new generation metaheuristic algorithms on 
benchmark problem sets.  

This study aims to address the above-mentioned issues by following manners:  
• First, seven benchmark problems were selected from the published literature 

and at the time of selection, attention was given that the objective function 
and associated constraints are very complex with multiple local optima and 
used before in literature for algorithm testing purpose.  

• Out of fifty major “classical” and “new generation” algorithms, four “classical” 
and four “new generation” algorithms were chosen from published papers (in 
last 40 years) on the basis of their potential and applications in diverse fields.  

• Finally, the main objective of this paper is fulfilled by testing their capability 
of applications by solving the selected benchmark problems and compare the 
performance of recent next generation promising algorithms against old 
generation “classical” algorithms. 

This paper is organized as follows: Section 2 and Section 3 describe a brief 
description of the selected “classical” and “new generation” algorithms, respectively. 
In result and discussion, Section 4.1 covers the detailed information about the 
selected benchmark problems. The performance of the selected algorithms on 
benchmark problems and concluding remarks about performance are presented in 
Section 4.2 and 5, respectively. The ultimate concluding remarks about this study are 
provided in Section 6. 
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Figure 1. Year-wise development of (a) “classical” and (b) “new 

generation” metaheuristic algorithms 

2. Classical algorithms 

Classical or old generation algorithms refer to all metaheuristic algorithms 
published before the year 2000. Because of their versatility over 40 years, these 
algorithms are applied in diverse field of science, engineering and medical and 
proven to be very robust. A schematic representation of major old generation 
algorithms is given in Figure 1(a). Due to brevity, in this section comprehensive 
information describing the main mechanism for optimization, metaheuristic behind 
execution and pseudocode are provided about the selected “classical” algorithms. 

2.1. Simulated annealing (SA) 

SA is a stochastic optimization tool for approximating the global optimum of a 
given function (Rao, 2019). This versatile and successful method of optimization is 
very beneficial for locating global optima when there are a lot of local optima. SA 
mimics the certain thermodynamics principals of producing ideal crystal. The term 
“Annealing” refers to a thermodynamic analogue, specifically the cooling and 
annealing of metals. This algorithm simulates the slow cooling process of molten 
metal by controlling the parameter such as temperature to get the minimum value of 
a function in a minimization problem. A selection of cooling system, i.e., the 
technique of reducing temperature is discussed in detail in Rangaiah (2010). 

Let an unconstrained nonlinear minimization problem but with bounds on 
variables is defined as: 

min 𝐹(𝑥)                   (1) 
Subject to 
𝑥𝑖

𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖
𝑢𝑝

; 𝑖 = 1, … , 𝑝                 (2) 
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Basic SA algorithm to solve the above-mentioned problem (Eq. 1 and 2) is 
illustrated in Figure 2. Eq. 3 and conditions (1) and (2) in the figure are: 

∆𝐹𝑘 = 𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1)                 (3) 
∆𝐹𝑘 ≤ 0               (Condition 1) 
∆𝐹𝑘 > 0 and P > 𝑅𝑁𝐷             (Condition 2) 

Where, P= probability of accepting a feasible point 
RND =random number from uniform distribution between 0 and 1. 
SA approach is also used for many non-linear problems with continuous 

variables. SA optimization process is commonly used in chemical and process 
engineering, especially for combinatorial problems or discrete-valued optimization 
problems. Therefore, SA is applied in discrete, but very large configuration spaces 
and has a wide range of applications that are still being investigated (Rangaiah, 
2010). 

 

 

Figure 2. Flowchart of basic SA algorithm 
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2.2. Genetic algorithm (GA) 

GA is the first algorithm in the field of metaheuristics designed by natural 
inspiration in the search optimization and machine learning processes. GA works by 
combining the ‘survival of the fittest' principle of natural evolution with genetic 
propagation of characteristics (Lahiri & Ghanta, 2010). The benefit of this principle is 
that it intelligently exploits the random search provided by previous data for 
exploring the better performance region of the solution space. As a result, this 
algorithm is commonly used to provide high-quality solutions to optimization and 
search problems. The details of the procedures of GA are described in Lahiri and 
Ghanta (2009, 2010). 

The pseudo code for GA algorithm is represented in Figure 3. 
 

 

Figure 3. Pseudo code of GA algorithm 

2.3. Particle swarm optimization (PSO) 

Particle swam optimization (PSO) is another metaheuristic global optimization 
algorithm which developed from the principle of swarm intelligence and based on 
the research on bird and fish flock movement behavior. This stochastic optimization 
technique is very easy to implement and very few particles need to be tuned. PSO is 
rapidly applied to solve complex optimist problems because the most optimist 
solution is worked out by the cooperation of each individual (Bai, 2010). The 
position of the most optimist particle during its movement (individual experience) 
and also in its surrounding (near experience) affects the position of each particle in 
the swarm. By applying its previous experience with flying and nearby particles, each 
particle adjusts its velocity to locate a better solution. The modification of the 
process in positions and velocities of the particles is illustrated in detail in Lahiri et 
al. (2012) and in this article shortly depicted in Figure 4. 

Easy implementation procedure and simplicity of the algorithm make helpful to 
wide and successful application of it in many areas such as model classification, 
function optimization, neural network training, the signal procession, automatic 
adaptation control, fuzzy system control etc. 
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Figure 4. Pseudo code of PSO algorithm 

2.4. Differential evolution (DE) 

DE is another most popular old generation metaheuristic algorithms (Storn & 
Price, 1997), and has been proved its effectiveness in addressing various real-life 
optimization problems. The only difference between the GA and DE is that self-
adaptive DE uses mutation as its primary search methods and creates new solution 
strings using non-uniform crossover and tournament selection operators (Enitan & 
Adeyemo, 2011). DE only requires few control variables that are usually derived 
from numerical interval with a well-defined range. DE is easy to use because it 
generates new vectors without relying on an external probability density function 
with yet to be determined mean and standard deviation. The detail approaches of DE 
for solving the problem are described in Storn and Price (1997). 

The pseudo code of DE is illustrated in Figure 5. 
Because of ease to use nature, promising result in real-world problems DE is 

frequently praised in industrial environments, especially in projects where no 
optimization specialists are present.   
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Figure 5. Flowchart of DE algorithm 

3. New generation algorithms 

Despite the successes of the “classical” metaheuristic algorithms, new generation 
metaheuristic techniques give the best solution for some unsolved hard real world 
problems by evolutionary or behavioral approaches (Dokeroglu et al., 2019). All 
major new generation algorithms developed in last 20 years are summarized 
schematically in Figure 1(b). In this section, a brief information about the selected 
algorithms is provided. All of these algorithms are population-based and take 
inspiration from the characteristics of the natural evolution. 

3.1. Firefly algorithm (FFA) 

The Firefly algorithm, which mimics the short and idealized flashing behavior of 
fireflies is proposed by Yang (2010a). The rhythmic flashing character can be 
expressed as a function that can be used to optimize combinatorial algorithms. The 
following principles idealize the flashing behaviors (Yang, 2010a). 

(1) All fireflies are attracted to other fireflies by flashing irrespective of their 
sex. 

(2) The attractiveness is directly related to the brightness of the firefly and both 
decrease with the increase in their distance.  

(3) The brightness or light intensity of a firefly is affected by the search space of 
the optimized objective function. 

The mathematical formulations are explained in detail by Yang (2010a). The 
pseudocode of the FFA algorithm is represented in Figure 6. 

FFA has established itself as the most promising new generation algorithm and it 
can strike a delicate balance during the optimization process between the 
exploration and exploitation of search space. From the literature, it is found that it 
can solve a wide range of optimization problems in a versatile field.  
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Figure 6. Pseudocode of FFA algorithm 

3.2. Krill Herd (KH) 

Gandomi and Alavi proposed the KH metaheuristic in 2012. This biologically 
inspired novel algorithm is based on a simulation of krill herding behavior. The main 
advantage of the KH is that they can construct large groups. When predators (e.g., 
penguins, seals, or sea birds) attack a herd, they can eat individual krill and remove 
them from the herd, resulting in reducing the density of the krill herd and the 
distance of the krill from the location of the food (Gandomi & Alavi, 2012). The 
herding of the krill individuals is a multi-objective global optimization problem that 
includes two main goals: (1) Density-dependent attraction of krill (increasing krill 
density) and (2) reaching food (areas of high food concentration) (Gandomi & Alavi, 
2012). The following actions decide the time-dependent position of an individual 
krill in 2D surface: 

i) Motion induced by other krill individuals 
ii) Foraging for food 
iii) Random diffusion 
A Lagrangian model is used to be able to search the whole space with n 

dimensions: 
𝑑𝑋𝑖

𝑑𝑡
= 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖                   (4) 

Where, 𝑁𝑖 =the motion effected by other individuals, 𝐹𝑖 =the act of foraging 

motion, 𝐷𝑖 =the physical diffusion of the 𝑖-th krill individual (𝑖 = (1,2, … , 𝑛). 
The position of the individual krill depending on the above-mentioned actions is 

illustrated in detail in Gabdomi and Alavi (2012).  
The pseudocode of KH algorithm is represented in Figure 7. 
KH is widely applied to solve the global numerical optimization problems 

(Dokeroglu et al., 2019; Bolaji et al., 2016).  
 

 

Figure 7. Pseudocode of KH algorithm 
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3.3. Grey Wolf Optimization (GWO) 

Mirjalili et al. (2014) developed GWO which is a stochastic and metaheuristic 
optimization methodology. This bionic optimization algorithm stimulates the rank-
based mechanisms and attacking behaviour of the grey wolf pack. The lead wolf 
helps the other wolves to capture the prey through the surrounding, haunting, and 
attacking process. This large-scale search methodology centred on 3 best grey 
wolves, but there is no elimination mechanism. The optimization technique is 
different from others in terms of modelling. It constitutes a strict hierarchical 
pyramid. The group size is 5-12 on average. α layer, consisting of a male and a female 
leader, is the strongest and most capable individual for deciding the team’s predation 
actions and other activities. β and δ layers are the second and third layers 
respectively in the hierarchy, responsible for assisting α in the behaviour of group 
organizations. The bottom ranking of the pyramid is occupied by the majority of the 
total, named ω. They are mainly responsible for satisfying the entire pack by 
balancing the internal relationship of the populations, looking after the young, and 
maintaining the dominance structure (Mirjalili et al., 2014). The social hierarchy, 
encircling, hunting, attacking prey (exploitation), and searching for prey are the main 
key elements of the GWO model (exploration). The detail mathematical modelling of 
GWO has been described by Mirjalili et al. (2014). 

This metaheuristic approach is applied in various real world problems because of 
its efficient and simple performance ability by tuning the fewest operators (Emary et 
al., 2016; Kohli & Arora, 2018; Mirjalili et al., 2016; Mittal et al., 2016; Qin et al., 
2019). Recent researches in this regard look forward to the further development of 
the optimization algorithm (Niu et al., 2019). The detail of the GWO algorithm is 
depicted in Figure 8. 

 

 

Figure 8. Pseudocode of GWO algorithm 

3.4. Symbiotic organism search (SOS) 

The SOS algorithm mimics the interactive behavior among different species of 
organisms in nature. The Greek word “symbiosis” means “living together”. In nature, 
symbiosis defines the reliance-based interaction between any two distinct species, 
which may be either obligatory or facultative (Cheng & Prayogo, 2014). Therefore, in 
nature, symbiosis relationships can be classified as mutualism, commensalism, and 
parasitism. Mutualism means a symbiotic interaction between two different species 
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that benefits them. Commensalism is a symbiotic connection that defines one can get 
an advantage, and the other is neutral between two species. In parasitism, one 
benefits and the other is deliberately harmed (Dokeroglu et al., 2019).   

The optimization approach of the SOS algorithm in the mutualism, 
commensalism, and parasitism phase is elaborated by Cheng and Prayogo (2014).  

The pseudocode of the SOS algorithm is represented in Figure 9. 
The new simple and powerful metaheuristic algorithm, SOS is a most potential 

candidate for solving hard optimization problems despite using fewer control 
parameters than other competing algorithms. The three phases of the SOS algorithm 
are simple to operate, with only simple mathematical operations to code. It can 
generate better solutions significantly than other metaheuristic algorithms.  

 

 

Figure 9. Pseudocode of SOS algorithm 

4. Result Discussion  

 4.1. Test problems 

The selected “classical” and “new generation” metaheuristic algorithms were 
tested on a number of benchmark problems of mixed integer non-linear 
programming (MINLP) and non-linear programming (NLP) used in literature for 
algorithm testing purpose (Dokeroglu et al., 2019; Shopova & Vaklieva-Bancheva, 
2006). While selecting the benchmark problems, attention was given that the 
objective function and associated constraints are very complex with multiple local 
optima and tried to solve before in published literature. In this study, seven of them 
were chosen and illustrated below. The detailed equation of objective function and 
associated constraint of the problems are represented in Table 1.  
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Table 1. Details of test problem for algorithm testing 

Test 
probl
em 
no. 1 

Floudas et al. (1989) and Summanwar et al. (2002): 
𝑀𝐼𝑁 (𝑦1 − 1)2 + (𝑦2 − 2)2 + (𝑦3 − 1)2 − log(𝑦4 + 1) + (𝑥1 − 1)2 +
(𝑥2 − 2)2 + (𝑥3 − 3)2  
Subject to the constraints: 
𝑦1 + 𝑦2 + 𝑦3 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 5  
𝑦3

2 + 𝑥1
2 + 𝑥2

2 + 𝑥3
2 ≤ 5.5  

𝑦1 + 𝑥1 ≤ 1.2  
𝑦2 + 𝑥2 ≤ 1.8  
𝑦3 + 𝑥3 ≤ 2.5  
𝑦4 + 𝑥1 ≤ 1.2  
𝑦2

2 + 𝑥2
2 ≤ 1.64  

𝑦3
2 + 𝑥3

2 ≤ 4.25  
𝑦2

2 + 𝑥3
2 ≤ 4.64  

𝑥𝑖 ≥ 0, 𝑖 = 1 … . .3  
𝑦𝑖 ∈ {0,1}, 𝑖 = 1 … . .4  

Test 
probl
em 
no. 2 

Summanwar et al. (2002): 
𝑀𝐼𝑁 5.35785𝑥3

2 + 0.83569𝑥1𝑥5 + 37.2932𝑥1 − 40792.14  
Subject to the constraints: 
85.3344 + 0.0056858𝑥2𝑥5 + 0.0006262𝑥1𝑥4 − 0.0022053𝑥3𝑥5 ≥ 0  
85.3344 + 0.0056858𝑥2𝑥5 + 0.0006262𝑥1𝑥4 − 0.0022053𝑥3𝑥5 ≤ 92  
80.5125 + 0.0071317𝑥2𝑥5 + 0.0029955𝑥1𝑥2 + 0.0021813𝑥3

2 ≥ 90  
80.5125 + 0.0071317𝑥2𝑥5 + 0.0029955𝑥1𝑥2 + 0.0021813𝑥3

2 ≤ 110  
9.300961 + 0.0047026𝑥3𝑥5 + 0.0012547𝑥1𝑥3 + 0.0019085𝑥3𝑥4 ≥ 20  
9.300961 + 0.0047026𝑥3𝑥5 + 0.0012547𝑥1𝑥3 + 0.0019085𝑥3𝑥4 ≤ 25  
78 ≤ 𝑥1 ≤ 102  
33 ≤ 𝑥2 ≤ 45  
27 ≤ 𝑥𝑖 ≤ 45, 𝑖 = 3, … ,5  

Test 
probl
em 
no. 3 

Summanwar et al. (2002): 
𝑀𝐼𝑁𝑥1

2 + 𝑥2
2 + 𝑥1𝑥2 − 14𝑥1 − 16𝑥2 + (𝑥3 − 10)2 + 4(𝑥4 − 5)2 +

(𝑥5 − 3)2 + 2(𝑥6 − 1)2 + 5𝑥7
2 + 7(𝑥8 − 11)2 + 2(𝑥9 − 10)2 + (𝑥10 − 7)2 +

45  
Subject to the constraints: 
105 − 4𝑥1 − 5𝑥2 + 3𝑥7 − 9𝑥8 ≥ 0  
−10𝑥1 + 8𝑥2 + 17𝑥7 − 2𝑥8 ≥ 0  
8𝑥1 − 2𝑥2 − 5𝑥9 + 2𝑥10 + 12 ≥ 0  
−3(𝑥1 − 2)2 − 4(𝑥2 − 3)2 − 2𝑥3

2 + 7𝑥4 + 120 ≥ 0  
−5𝑥1

2 − 8𝑥2 − (𝑥3 − 6)2 + 2𝑥4 + 40 ≥ 0  
−𝑥1

2 − 2(𝑥2 − 2)2 + 2𝑥1𝑥2 − 14𝑥5 + 6𝑥6 ≥ 0  
−0.5(𝑥1 − 8)2 − 2(𝑥2 − 4)2 − 3𝑥5

2 + 𝑥6 + 30 ≥ 0  
3𝑥1 − 6𝑥2 − 12(𝑥9 − 8)2 + 7𝑥10 ≥ 0  
0 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, … ,10  

Test 
probl
em 
no. 4 

Michalewicz (1995) and Deb (2000): 
𝑀𝐼𝑁5 ∑ 𝑥𝑖

4
𝑖=1 − 5 ∑ 𝑥𝑖

24
𝑖=1 − ∑ 𝑥𝑖

13
𝑖=5   

Subject to the constraints: 
2𝑥1 + 2𝑥2 + 𝑥10 + 𝑥11 ≤ 10  
2𝑥1 + 2𝑥3 + 𝑥10 + 𝑥12 ≤ 10  
2𝑥2 + 2𝑥3 + 𝑥11 + 𝑥12 ≤ 10  
−8𝑥1 + 𝑥10 ≤ 0  
−8𝑥2 + 𝑥11 ≤ 0  
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−8𝑥3 + 𝑥12 ≤ 0  
−2𝑥4 − 𝑥5 + 𝑥10 ≤ 0  
−2𝑥6 − 𝑥7 + 𝑥11 ≤ 0  
−2𝑥8 − 𝑥9 + 𝑥12 ≤ 0  
0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, … ,9  
0 ≤ 𝑥𝑖 ≤ 100, 𝑖 = 10,11,12  
0 ≤ 𝑥13 ≤ 1  

Test 
probl
em 
no. 5 

Michalewicz (1995) and Deb (2000): 
𝑀𝐼𝑁𝑥1 + 𝑥2 + 𝑥3  
Subject to the constraints: 
1 − 0.0025(𝑥4 + 𝑥6) ≥ 0  
1 − 0.0025(𝑥4 + 𝑥7 − 𝑥4) ≥ 0  
1 − 0.01(𝑥8 + 𝑥5) ≥ 0  
𝑥1𝑥6 − 833.33252𝑥4 − 100𝑥1 + 83333.333 ≥ 0  
𝑥2𝑥7 − 1250𝑥5 − 𝑥2𝑥4 + 1250𝑥4 ≥ 0  
𝑥3𝑥8 − 𝑥3𝑥5 + 2500𝑥5 + 1250000 ≥ 0  
100 ≤ 𝑥1 ≤ 10000  
1000 ≤ 𝑥2, 𝑥3 ≤ 10000  
10 ≤ 𝑥𝑖 ≤ 1000, 𝑖 = 4, … ,8  

Test 
probl
em 
no. 6 

Michalewicz (1995) and Deb (2000): 
𝑀𝐼𝑁(𝑥1 − 10)2 + 5(𝑥2 − 12)2 + 𝑥3

4 + 3(𝑥4 − 11.0)2 + 10𝑥5
6 + 7𝑥6

2 + 𝑥7
4 −

4𝑥6𝑥7 − 10𝑥6 − 8𝑥7  
Subject to the constraints: 
127 − 2𝑥1

2 − 3𝑥2
4 − 𝑥3 − 4𝑥4

2 − 5𝑥5 ≥ 0  
282 − 7𝑥1 − 3𝑥2 − 10𝑥3

2 − 𝑥4 + 𝑥5 ≥ 0  
196 − 23𝑥1 + 3𝑥1𝑥2 − 2𝑥3

2 − 5𝑥6 + 11𝑥7 ≥ 0  
10 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, … ,7  

Test 
probl
em 
no. 7 

Floudas et al. (1989) and Summanwar et al. (2002): 
𝑀𝐴𝑋 − 2𝑥1 − 3𝑥2 − 1.5𝑦1 − 2𝑦2 + 0.5𝑦3  
Subject to the constraints: 
𝑥1

2 + 𝑦1 = 1.25; 𝑥2
1.5 + 1.5𝑦2 = 3  

𝑥1 + 𝑦1 ≤ 1.6; 1.333𝑥2 + 𝑦2 ≤ 3  
−𝑦1 − 𝑦2 + 𝑦3 ≤ 0  
𝑥1, 𝑥2 ≥ 0  
𝑦1, 𝑦2, 𝑦3 ∈ {0,1}  

4.1.1. Test problem 1 

It is a MINLP minimization problem that includes nine inequality constraints and 
four binary and three continuous variables (Floudas et al., 1989).  

4.1.2. Test problem 2 

It is an NLP minimization problem which comprises six inequality constraints and 
five continuous variables (Summanwar et al., 2002).  

4.1.3. Test problem 3 

It is an NLP minimization problem containing eight inequality constraints and ten 
continuous variables (Summanwar et al., 2002).  
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4.1.4. Test problem 4 

It is a relatively easy problem of NLP minimization with nine inequality 
constraints and thirteen variables (Deb, 2000; Michalewicz, 1995).  

4.1.5. Test problem 5 

This NLP minimization problem comprises of six inequality constraints and eight 
variables (Michalewicz, 1995).  

4.1.6. Test problem 6 

It is an NLP minimization problem that consists four non-linear constraints and 
seven variables (Michalewicz, 1995).  

4.1.7. Test problem 7 

It is a MINLP maximization problem having two equality and three inequality 
constraints as well as three binary and two continuous variables (Summanwar et al., 
2002).  

4.2. Performance of the selected algorithms on test problems 

In this study, four old generation (SA, GA, PSO, and DE) and four new generation 
(FFA, KH, GWO, and SOS) algorithms were chosen on the basis of their potential in 
diverse field that are published in large number of research papers in last 40 years. 
Table 2 represents the lower limit and upper limit of decision variables of the test 
problems. Codes are developed in MATLAB for each of eight algorithms and run in 
MATLAB R2017a platform. Herein, due to stochastic nature of each algorithm, each 
benchmark problem was run for at least 200 times to obtain the best result and 
maintain accuracy. The population solutions for 200 runs are summarized in a box 
plot (Figure 10) for test problems 1, 3, 5, and 7.  

All the simulations were performed on Pentium i7 processor. The performance of 
selected algorithms against the tested problems is presented in Table 3 (a), (b), and 
(c), respectively. Their performance indices were chosen to compare their 
effectiveness: (1) the minimum or maximum objective function value and its 
proximity with reported global solution, (2) number of constraints violation (ideally 
all constraints should be obeyed i.e., the value should be zero), (3) required 
execution time to attain the optimal solution (less time is preferable).  

There are many meta parameters of the individual evolutionary algorithms which 
need to set according to the specific problem. Judicious selections of these meta 
parameters improve the solution quality of individual algorithms. However, in this 
work we have selected the default values of these parameters as suggested by 
literatures (Kirkpatrick et al., 1983; Goldberg, 1989; Kennedy & Eberhart, 1995; 
Storn & Price, 1997; Yang, 2010a; Gandomi & Alavi, 2012; Mirjalili et al., 2014; Cheng 
& Prayogo, 2014). It may possible to improve the final solution reached by the 
individual algorithms by optimizing these meta parameters. However, this was not 
tried in the present study as this study focuses on the evaluation of different 
optimization algorithms at their default parameter settings. 
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Table 2. Lower limit and upper limit of decision variables 

Test 
problem 
number 

Limit Decision variables 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9  𝑋10 𝑋11 𝑋12 𝑋13 

1 Lower  0 0 0 0 0 0 0 − − − − − − 

Upper 1 1 1 1 2 2 2 − − − − − − 

2 Lower  78 33 27 27 27 − − − − − − − − 

Upper  102 45 45 45 45 − − − − − − − − 

3 Lower  0 0 0 0 0 0 0 0 0 0 − − − 

Upper  10 10 10 10 10 10 10 10 10 10 − − − 

4 Lower  0 0 0 0 0 0 0 0 0 0 0 0 0 

Upper  10 10 10 10 10 10 10 10 10 10 10 10 10 

5 Lower  100 1000 1000 10 10 10 10 10 − − − − − 

Upper  10000 10000 10000 1000 1000 1000 1000 1000 − − − − − 

6 Lower  −10 −10 −10 −10 −10 −10 −10 − − − − − − 

Upper  10 10 10 10 10 10 10 − − − − − − 

7 Lower  0 0 0 0 0 − − − − − − − − 

Upper  1 1 1 10 10 − − − − − − − − 

Table 3(a). Performance of algorithms for MINLP minimization problem 

 

  

P
ro

b
le

m
 N

o
. 

Best 
solution 
reported 

Result of tested algorithm 

Best 
fitness 
value 

Algorithm Fitness 
value 

No. of 
constraints 

violated 

Time 
required 

(sec) 

% of 
deviation 
from the 

best 
value 

1 4.5795 SA 3.5527 0 5.734 1.63 
GA 4.0780 0 0.375 16.66 

PSO 3.6381 1 39.50 4.08 

DE 3.5161 0 0.219 0.59 

FFA 3.4971 0 3.422 0.04 

KH 3.6305 0 0.844 3.86 

GWO 3.9040 0 0.391 11.68 

SOS 3.4956 0 0.250 0.00 
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Table 3(b). Performance of algorithms for NLP minimization problem 
P

ro
b

le
m

 N
o

. 

Best solution 
reported 

Result of tested algorithm 

Best fitness 
value 

Algorithm Fitness 
value 

No. of 
constraints 

violated 

Time 
required 

(sec) 

% of 
deviation 
from the 

best 
value 

2 -30665.41 SA -30517.33 0 5.875 0.48 
GA -30665.50 0 0.203 0.00 
PSO -30665.55 1 33.93 0.0001 
DE -30665.50 0 0.203 0.00 

FFA -30665.50 0 0.203 0.00 
KH -30427.22 0 0.453 0.77 

GWO -30536.47 0 0.391 0.42 
SOS -30665.54 0 0.262 0.0001 

3 24.3062 SA 39.3890 0 8.047 58.07 
GA 32.1862 0 0.234 29.16 

PSO 25.3479 0 1.722 1.72 
DE 26.8428 0 0.250 7.72 

FFA 32.1862 0 29.164 29.16 
KH 106.9755 0 0.6406 329.30 

GWO 51.5601 0 0.4218 106.91 
SOS 24.9187 0 0.2968 0.00 

4 -15 SA -7.6917 0 9.703 61.03 
GA -14.9450 0 0.938 24.29 

PSO -14.6471 2 33.32 25.80 
DE -14.9959 0 0.234 24.03 

FFA 99.2648 2 2.984 402.871 
KH -19.7396 0 3.203 0.00 

GWO -7.4812 0 0.640 62.10 
SOS -14.9999 0 0.250 24.01 

5 7049.3309 SA 3327.859 0 7.422 156.28 
GA 16410.230 0 0.969 1163.75 

PSO 2100.000 0 28.766 61.72 
DE 2100.000 0 0.172 61.72 

FFA 8038.478 0 2.625 519.04 
KH 1298.535 0 0.484 0.00 

GWO 2100.000 0 0.391 61.72 
SOS 2100.000 0 0.250 61.72 

6 680.6300 SA 682.014 0 4.719 0.20 
GA 760.213 0 0.891 11.69 

PSO 680.646 0 30.094 0.00 
DE 681.521 0 0.188 0.13 

FFA 680.906 0 2.626 0.04 
KH 691.964 0 0.609 1.66 

GWO 689.110 0 0.359 1.24 
SOS 680.697 0 0.297 0.01 



A comparative study of metaheuristics algorithms based on their performance of complex … 

357 

Table 3(c). Performance of algorithms for MINLP maximization problem 

4.2.1. Performance for Test problem 1 

The best solution for this MINLP minimization problem was 4.97 that reported by 
Deb’s method in the year 2000 and further Summanwar et al. (2002) has obtained 
the best solution of 4.5795 with modified constraints and more complicated 
algorithm. From the Table 3(a), and Figure 10(a), it is observed that in this study the 
obtained optimum solution is 3.4956 by SOS with short time among the eight 
selected algorithms which is far better than the reported solution. FFA also attains 
very close value to the optimum (3.4971) but with high execution time. Among the 
“classical” algorithms, DE shows the most promising result (3.5161) even with 
shortest execution time.  

4.2.2. Performance for Test problem 2 

Deb solved this NLP minimization problem with only GA and the best solution 
was reported -30664.99 and -30665.41 by Deb (2000) and Summanwar et al. (2002), 
respectively. Herein, we have obtained the best solution of -30665.50 with GA, DE 
and FFA that is commensurable than reported ones (Table 3(b)). Even all the three 
algorithms achieve the optimum value with same execution time. “New generation” 
metaheuristic, SOS also achieves optimal solution (-30665.54) which has very close 
proximity with the best one within short execution time.   

 

P
ro
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le

m
 N

o
. 

Best 
solution 
reported 

Result of tested algorithm 

Best 
fitness 
value 

Algorithm Fitness 
value 

No. of 
constraints 

violated 

Time 
required 

(sec) 

% of 
deviation 
from the 

best value 
7 -7.66 SA -8.401 0 5.203 9.60 

GA -0.798 1 1.359 89.59 
PSO -0.793 1 36.469 89.65 
DE -7.675 1 0.203 0.13 

FFA -0.783 1 3.453 89.78 
KH -7.665 0 0.516 0.00 

GWO -0.797 1 0.344 89.60 
SOS -8.416 0 0.250 9.80 
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Figure 10. Box plot of solutions for (a) Test problem 1; (b) Test Problem 3; 

(c) Test problem 5; and (d) Test problem 7 

4.2.3. Performance for Test problem 3 

Deb (2000) and Summanwar et al. (2002) solved this benchmark problem and 
obtained the optimum solution of 24.34 and 24.366453, respectively. However, the 
global optimum reported of the problem is 24.3062. In this study, the best solution of 
24.9187 is found by SOS algorithm with minimum time and it is also approximately 
around the reported value (Table 3(b) and Figure 10(b)). The old algorithm, PSO 
obtains the second-best optimum solution of 25.3479, followed by DE among the 
eight algorithms. 

4.2.4. Performance for Test problem 4 

Michalewics (1995) stated that all constrained handling methods used to solve 
this problem have found the optimal solution. In the year 2000, Deb found the 
optimum solution of -15 (Deb, 2000). In this study, Table 3(b) presents that for Test 
problem 4 the optimum solution of -19.7396 is obtained by KH algorithm in 3.203 
sec that is improved sufficiently than the reported best optimum solution. Among the 
eight algorithms, SOS obtains the second-best optimum solution (-14.9999) at 0.250 
sec. The “classical” one, DE also attain the optimum value of -14.9959 (very close 
proximity with second-best value) even with minimum execution time (0.234 sec). 
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4.2.5. Performance for Test problem 5 

Michalewics reported the optimum solution of 7377.976 by solving the NLP 
minimization problem and further, in the year 2000, Deb attained the best solution of 
7060.221 with GA. However, till now, the reported global optimum solution is 
7049.3309. However, in the present study, among the eight selected algorithms, KH 
performs best and reaches the optimum solution of 1298.535 within a very short 
time (0.484 sec). Other algorithms, DE and PSO from “classical” one, and GWO and 
SOS from “new generation” algorithms, obtain the second-best solution, the value of 
2100.00 with different execution time. Among those, DE takes minimum execution 
time followed by SOS and GWO, whereas, PSO requires highest execution time 
(28.766 sec). The detail of result is presented in Table 3(b) and Figure 10(c).  

4.2.6. Performance for Test problem 6 

The reported best solution for this NLP minimization problem is 680.6300. 
Michalewics found the best result of 680.642 in 1995 with penalty function approach 
(Michalewicz, 1995) and Deb reported the best solution as 680.634 by constrained 
handling method (Deb, 2000). Herein, for Test problem 6, Table 3(b) presents that 
the true optimal solution of 680.646 is obtained by PSO algorithm that is very close 
to the reported best one but the execution time is too high. In contrast, SOS and FFA 
attain the fitness values of 680.697 and 680.906 respectively, which are very close to 
the best one even with very short time. Among the “classical” algorithm, DE reaches 
the optimum value of 681.521 (little bit high than the best value) within very less 
execution time compare to PSO.   

4.2.7. Performance for Test problem 7 

The best solutions obtained by Deb’s method and Summanwar et al. are -7.66718 
and -7.667178, respectively for this MINLP maximization problem. Therefore, the 
global optimum of -7.66 is reported as best-known solution. Eight selected 
algorithms perform very well against this maximization problem and among all, KH 
improves the result most and reaches the optimum solution of -7.665 in execution 
time of 0.516. All other algorithms except SA, and SOS, fail to solve this problem as 
they violate one constraint. On the other hand, SA and SOS unable to obtain the 
optimum solution far better than the reported one. The detail performance of the 
algorithms and related box plot are presented in Table 3(c) and Figure 10(d), 
respectively.  

5. Overall observation on performance 

While comparing the performance of various optimization algorithms on test 
problems, we give priority of objectives as per below: 

Priority 1: Algorithms attain the lowest (or highest) objective function value. 
Priority 2: If two or more algorithms attain the optimum value simultaneously, 

then their lower execution time given priority. 
Priority 3: If any algorithm fails to obey the any constraint that will make it 

ineligible candidate solution. 
Based on the above criteria, performances of eight algorithms on the seven 

selected benchmark problems are compared that are presented in Table 4 and 
following concluding remarks are provided: 
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1) Comparing the best results of optimal values by eight selected algorithms, it 
can be observed that there is no single optimization algorithm which universally 
performs best on all the seven selected benchmark problems.  

2) From the Table 4, it is shown that among the selected eight metaheuristic 
algorithms, KH has achieved the best solution for three benchmark problems. 
Whereas, SOS has performed best for two and FFA, GA, DE, and PSO each have 
executed best result for one test problem.  

3) While comparing the performance of “classical” and “new generation” 
metaheuristic algorithms, new generation algorithms performed much better 
(selected as best performer for six times among seven benchmark problem). 

4) Among four “Classical” algorithms, DE, and PSO effectively attains the 
optimal solution which are very close to the best one. In spite of its accurate 
performance ability, PSO takes much more time than any other algorithms. DE, PSO 
and SA performed best for four, two and one selected test problems, respectively. 

5) Among the selected “new generation” algorithm, SOS and KH, each 
performed best for three benchmark problems and FFA showed its best performance 
for one. Therefore, SOS and KH are most promising among new generation 
algorithms. 

6) If top two global performer are considered then out of 14 performers, the 
ranking based on their performance is as follows: 

SOS (5 times)>KH (3 times)>FFA=DE=PSO (2 times)>GA (1 time)  
Though the KH achieved the best solution for one more benchmark problem 

compared to SOS (already mentioned in observation number 2), but the ranking 
proved that the consistency of SOS performance is better than KH. 

However, these observations are not universal and the performance of the 
algorithms may change for other benchmark problems.  

Table 4. Overall performance of the selected metaheuristic algorithms 

Test 
Problem 
Number 

Top two 
performer of 

“classical” 
algorithms* 

Top two performer 
of “new generation” 

algorithms* 

Top two global performer 
among “classical” and 

“new generation” 
algorithms* 

1 
2 
3 
4 
5 
6 
7 

DE, SA 
DE, GA 

PSO, DE 
DE, GA 

DE, PSO 
PSO, DE 

SA 

SOS, FFA 
FFA, SOS 
SOS, FFA 
KH, SOS 
KH, SOS 
SOS, FFA 
KH, SOS 

SOS, FFA 
FFA, DE, GA** 

SOS, PSO 
KH, SOS 
KH, DE 

PSO, SOS 
KH, SOS 

*Arrange them in decreasing order on the basis of performance 
**All are in same order of sequence 

 

From the results of all algorithms on all the test problems, it is evident that there 
is no single optimization algorithm that universally performs best on all the seven 
selected benchmark problems. It supports the facts of No Free Lunch Theorem 
(NFLT) (Wolpert & Macready, 1997). 

According to the recently discovered No Free Lunch Theorem (NFLT) (Adam et 
al., 2019; Ho & Pepyne, 2001, 2002; Wolpert & Macready, 1997), no strategy can be 
predicted to outperform another if we are unable to make any previous assumptions 
about the optimization problem we are attempting to solve. In other words, there is 
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no such thing as a general-purpose universal optimization approach. One technique 
may outperform another only if it is tailored to the problem at hand. 

What can we assume about likely problem instances, what structural qualities the 
assumptions suggest, what technique is best matched to that structure, and how 
sensitive our strategy is to the assumptions are the fundamental questions in 
optimization practice. Therefore, we still need to conduct a great deal of research and 
develop a better understanding of the implications of “No free lunch Theorem” to 
find a universal metaheuristic optimization algorithm. 

6. Conclusions 

In recent years, metaheuristic algorithms were successfully being applied for 
solving the intractable optimizing problems. The majority of state-of-the-art 
metaheuristic have been developed before the year 2000 (“classical” algorithms) and 
then they are become more and more advanced improving their performance and 
execution time (“new generation” algorithms). The novelty of the present study was 
to test the capability of applications and compare their performance of the four 
selected algorithms from “classical” and “new generation” each by solving a number 
of selected benchmark problems that are used in the literature for algorithm testing 
purpose and ultimate aim was to find out the universally best algorithm among the 
selected eight metaheuristic algorithms. However, there was no such universally best 
algorithm which will perform best in different problem statement. The “new 
generation” SOS and KH algorithm successfully solved most of all the selected test 
problems and achieved the best solution for most of them. Among four “Classical” 
algorithms, DE, and PSO effectively attained the optimal solution which were very 
close to the best one. Based on the result obtained on the present study, new 
generation performed much better than old generation. It can be concluded on the 
basis of the performance of different algorithms that both SOS and KH exhibited the 
most promising result and great potential with respect to execution time also. This 
study gives some insights to use SOS and KH as best performing algorithm to the 
novice user who can easily get lost by the plethora of large number of optimization 
algorithms. 
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