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Abstract: Over the last few years, sponge iron-based production 
transportation and pollution problems for major sponge iron producing 
countries are triggering a critical issue. The excess of marginal pollution from 
production industries and their disintegration takes drives towards the 
change of policymaking. The sustainable development of any country signifies 
the reduction of biohazards, which in turn improves the health index and 
livelihood status of people across the world. Keeping this in mind, a cost 
depreciation problem for the bi-layer integrated supply chain model has been 
built up. We consider the functional dependencies among all considerable 
decision variables like production rate, consumption rate which leads to the 
pollution rate of different countries exclusively. In this study, we have shown 
how production and rail freight transport relates to pollution. To draw several 
graphs and numerical computations we use MATLAB software and C 
programming via solution algorithm respectively. The comparative study has 
been presented using general fuzzy as well as cloudy fuzzy systems. Lastly, we 
have justified our proposed model using sensitivity analysis along with 
graphical interpretation. 
 
Key words: Production, Pollution, Transportation, Cloudy Fuzzy, Modeling, 
Optimization. 

1. Introduction 

This section has been splitted into two subsections namely General overview and 
Motivation and specific study. 
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1.1. General Overview  

Due to globalization, the manufacturing of iron as well as steel and other materials, 
such as aluminum and materials for chemical-based products are playing a substantial 
role in the competitive market.  We know, the total energy use and different levels of 
pollution come from various stages in the production process. The ferroalloys 
production is minor in contrast with base materials such as steel and aluminum. The 
major portion of complete man-made pollution has been incorporated by the severe 
environmental effects of silicon and ferroalloys. Taking consideration of the by-
products of the production of sponge iron, the daily increment in use of general assets 
like electrical as well as electronic products, chemical materials, iron, and steel items 
is alarming contents. Also, the large content of daily exhausted baby food products, 
lapsed drugs are the burning issues for our environment. The manufacturers have 
extensively marketed for updated items to remain in competition in the global game. 
With the inclusion of upgraded commodities, old stocks become useless for 
consumption and thus generate various liabilities causing a severe impact on our 
surroundings. 

To realize, control as well as minimizing the surrounding pollution linked with the 
manufacturing process, their products and actions, the insight of life-cycle concept is 
booming method for any industry. It is important to consider the environmental issues 
in sponge iron production from a broad view. For the superior perception of the 
environmental problem the understanding of drawbacks with a production chain from 
"cradle to grave" using Life Cycle Assessment (LCA) is in dire necessity. The inclusion 
of the LCA study dishes out an integrated analysis of resources, substantial, and health 
effects on the system. Also, it paves the way for environmental advancements by 
carrying out significant opportunities. In a complete LCA, the total environmental cost 
consists of all material sources as well as energy resources inducted in the process 
from raw materials up to production and transportation. 

1.2. Motivation and Specific Study 

In the literature, several research articles are available in which most of them are 
associated to cost benefits and controlling carbon emissions from the vehicles used in 
the transportation itself.  Sarkar et al. (2015) investigated the outcome of an uneven 
lot size model for changeable establishment cost and carbon discharge cost in an SC 
problem. Madadi et al. (2010) came about a multi-tiered inventory management 
settlement with shipment cost emolument. Recently, the consequence of changing 
shipment and outpouring of carbon in the three-echelon SC model has been reported 
by Sarkar et al. (2016). Depending on electrical energy on railway shipment, Bryan et 
al. (2008) proposed a model. A detailed review with an introduction to controlling 
novel mechanization for carbon combustion had been presented by Sithole et al. 
(2018). In the case of Ferromanganese and steel, Sjoqvist et al. (2001) reported the 
outcome of carbon excretion during cleaning. It has to be mentioned, the correlation 
among manufacturing, shipment, carbon release, and environmental contamination is 
also being included in the Ferro industry-related conveying problem. Recent works 
suggest the severe knock-on our surrounding by the transport sector and this setback 
forces us to reconsider the environmental effect due to the transport organizing and 
operations. The main culprits from transportation are consist of different oxides of 
Carbon and Nitrogen, as well as different organic chemicals. The rising environmental 
consciousness among people, enormous competition as well as strict policies from the 
government enforce the manufacturer for minimization of this severe pollution for the 
sake of mankind (Nouira et al., 2016). The important model by Benjaafar et al. (2010) 
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describes the way of controlling carbon footprint in supply chains. Aarthi (2017), Chen 
et al. (2013), Mancini et al. (2016), Akten and Akyol (2018) suggest a different model 
(like the EOQ model) and methods to combat the rising carbon footprint. Grzywiński 
(2019) and Grzywiński et al. (2019), analysed various optimization techniques using 
metaheuristic algorithm and Jaya algorithm. Eirgash et al. (2019) described a multi-
objective inventory model with trade credit. Bera et al. (2020) studied the impacts of 
air pollution in covid situation in the urban areas. A risk assessment of bankrupt cases 
in European Countries was done by Bărbuță-Mișu and Madaleno (2020). Abualigah et 
al. (2021) developed an arithmetic optimization algorithm to solve supply chain 
management problems. It has been observed that all earlier authors have focused to 
measure the carbon emission due to production, although along with it, transportation 
plays a major role. 

The Fuzzy system is utilized when there is the existence of some non-random 
uncertain parameters in the system. After Zadeh (1965) developed the fuzzy set 
theory, there is multiple reports by renowned scientists across the globe (Kumar et al., 
2012; De & Sana, 2013; De et al., 2014). Along with this, the production mechanism 
has been considerably investigated using cloudy fuzzy set (De & Mahata, 2017; 
Karmakar et al., 2017, 2018) and triangular dense fuzzy set (De & Beg, 2017). After the 
invention of triangular dense lock fuzzy sets by De (2017), De and Mahata (2020) 
developed a supply chain backordering model under triangular lock fuzzy 
environment Bhattacharya et al. (2020, 2021) developed pollution sensitive inventory 
models with the effect of corruption as well as global warming and solved these via 
fuzzy system. Giri et al. (2021) solved a price dependent multi-item inventory model 
using intuitionistic fuzzy number. 

The above-reported literature suggests no one has investigated the industrial 
supply chain (SC) problem that includes the pollution due to production as well as 
transportation. Indeed, methodology over fuzzy learning theory was not popularly 
utilized yet. Hence in our study, we present out an article that includes cost 
minimization two-layer SC problem having two-way pollution channel under learning 
fuzzy environment. We solve the specific inventory management problem into three 
sub cases: one by crisp approach, another by general fuzzy approach and the other by 
cloudy fuzzy approach. We have also developed a solution algorithm to solve the 
problem in each case. We also include a sensitivity analysis table to show the stability 
of the parameters involving in the model.  

The organization of this article is developed as follows: section one is introduction 
followed by motivation and specific study. Section 2 includes preliminaries that 
focuses definition of general and cloudy fuzzy sets and their defuzzification 
techniques. Section 3 describes notations, assumptions and a case study. Section 4 
indicates formulation of crisp inventory model. Section 5 includes the general fuzzy 
mathematical model and its defuzzification method; section 6 develops cloudy fuzzy 
mathematical model and its defuzzification method with a solution algorithm, pseudo 
code of C programming; section 7 and 8 indicates numerical illustration and sensitivity 
analysis respectively. Sections 9 develops graphical illustrations; section 10 
represents the merits and demerits of the article and finally section 11 keeps a 
conclusion followed by scope of future work.  

2. Preliminaries 

In this section, we shall give some definitions and basic formulae that are used to 

formulate and solve the proposed model. 
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2.1. Pollution function 

From the report by Karmakar et al. (2017), we have taken the differential equation 

which governed the production-pollution rate is: 

{
�̇� = 𝑎𝑋 − 𝑟𝑋2 − 𝛼𝑋𝑌, 𝑎, 𝑟, 𝛼 > 0

�̇� = −𝑐𝑌 + 𝛾𝑋𝑌, 𝑐, 𝛾 > 0
               (1) 

From above, the pollution y (%) with production rate (p) is governed by 

𝑦 = 0.45 + 0.01𝑝 − 0.25 𝑙𝑜𝑔(𝑝)                                                                               (2) 

2.2. Normalized General Triangular Fuzzy Number (NGTFN) 

Let A be an NGTFN having the form �̃� = 〈𝑎1, 𝑎2, 𝑎3〉. Then the membership function 

of the fuzzy set �̃� is defined by 

𝜇(�̃�) =

{
 

 
0, 𝑖𝑓 𝑎 < 𝑎1 𝑎𝑛𝑑 𝑎 > 𝑎3
𝑎−𝑎1

𝑎2−𝑎1
 ,       𝑖𝑓 𝑎1 ≤ 𝑎 ≤ 𝑎2

𝑎3−𝑎

𝑎3−𝑎2
 ,      𝑖𝑓 𝑎2 ≤ 𝑎 ≤ 𝑎3

                               (3) 

Now, the index value of 𝜇(�̃�) due to Yager (1981) is obtained as 

𝐼(�̃�) =
1

2
∫ [𝐿(𝛼) + 𝑅(𝛼)]𝑑𝛼
1

0
=

(𝑎1+2𝑎2+𝑎3)

4
                                                              (4) 

for the left and right α-cuts 𝐿(𝛼) = 𝑎1 + (𝑎2 − 𝑎1)𝛼 and 𝑅(𝛼) = 𝑎3 − (𝑎3 − 𝑎2)𝛼 
respectively. 

2.3. Cloudy Normalized Triangular Fuzzy Number (CNTFN) (De and Mahata, 

2016) 

A fuzzy number �̃� = 〈𝑎1, 𝑎2, 𝑎3〉 is called cloudy normalized fuzzy number if, after an 
infinite time, the set converges to a singleton crisp set. That is, if the time 𝑡 → ∞, the 
set �̃� becomes 𝐴 = {𝑎2}. For example, we consider the fuzzy number  

 �̃� = 〈𝑎2 (1 −
𝜌

1+𝑡
) , 𝑎2, 𝑎2 (1 +

𝜎

1+𝑡
)〉, for 0 < 𝜌, 𝜎 < 1                                                  (5) 

Here we see that both lim
𝑡→∞

𝑎2 (1 −
𝜌

1+𝑡
) and lim

𝑡→∞
𝑎2 (1 +

𝜎

1+𝑡
) converges to 𝑎2. Then its 

membership function for 𝑡 ≥ 0 is given by 

𝜇(𝑥, 𝑡) =

{
 
 

 
 0     𝑖𝑓 𝑥 < 𝑎2 (1 −

𝜌

1+𝑡
)   𝑎𝑛𝑑  𝑥 > 𝑎2 (1 +

𝜎

1+𝑡
)

𝑥−𝑎2(1−
𝜌

1+𝑡
)

𝜌𝑎2
1+𝑡

  𝑖𝑓 𝑎2 (1 −
𝜌

1+𝑡
) ≤ 𝑥 ≤ 𝑎2

𝑎2(1+
𝜎

1+𝑡
)−𝑥

𝜎𝑎2
1+𝑡

  𝑖𝑓  𝑎2 ≤ 𝑥 ≤ 𝑎2 (1 +
𝜎

1+𝑡
)

                               (6) 

Now the index value of  �̃� is given by  

𝐼( �̃�) =
1

2𝑇
∬ {𝐿−1(𝛼, 𝑡) + 𝑅−1(𝛼, 𝑡)}
𝛼=1,𝑡=𝑇

𝛼=0,𝑡=0
𝑑𝛼𝑑𝑡 = 𝑎2 [1 +

𝜎−𝜌

4

𝑙𝑜𝑔(1+𝑇)

𝑇
]                        (7)                      

For the left and right 𝛼 -cuts 𝐿−1(𝛼, 𝑡) = 𝑎2 (1 −
𝜌

1+𝑡
+

𝜌𝛼

1+𝑡
) and 𝑅−1(𝛼, 𝑡) =

𝑎2 (1 +
𝜎

1+𝑡
−

𝜎𝛼

1+𝑡
) respectively. 
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3. Notations and Assumptions 

In this section we shall discuss the notations and assumptions that are used 
throughout the proposed model. 
Notations 
𝑝  :     Production rate per cycle (MT/year) (Decision variable) 
𝑦  :     Pollution index (%) 
𝜏1 :    Production run time (Decision variable) (year) 
𝜏2 :     Transportation time (year) 
𝜏3 :     Inventory exhaust time (year) 
𝑑 :      Rate of demand for each cycle (MT/year) 
𝑞 :      Total quantity in order (MT) 
𝛿 :      Deterioration rate per unit time 
𝑙 :       Transportation distance (Mile) 
𝐶𝑝 :   Manufacturing expenditure for each item ($) 

ℎ𝑝 :    Carrying expenditure for each item for each interval of time at maker’s     

           plant($) 
ℎ𝑟 :     Carrying expenditure for each item for each interval of time at dealer’s shop  
          ($) 
𝐶𝑝𝑜𝑙 :  Pollution expenditure ($) (per one item) 

𝐶𝑡 :     Transportation cost ($) (per unit MT per Mile) 
𝐶𝑑 :     Deterioration price ($) (for each item for each interval of time) 
𝐶𝑐  :     Global social expenditure of carbon ($) 
𝑘1 :     Setup cost at production plant ($) 
𝑘2 :     Setup cost at retailer side ($) 
 

Assumptions 

1. Replenishments are instantaneous. 

2. Shortages are not allowed. 

3. Lead time is zero. 

4. A producer has the sole responsibility to transport the items to a retailer. 

5. Deterioration occurs and deteriorated items cannot be recoverable. 

6. A producer has a separate transportation facility. 

7. Pollution during production is controlled by the inbuilt technology of the 

production process but 100% pollution reduction is not possible. 

8. No deterioration is viewed in the final product during transportation. 

3.1. Case Study 

     Let us extend the case study performed by Karmakar et al. (2017, 2018). These 
studies were involved in the manufacturing and pollution of a sponge iron industry. 
Our focus of interest is to measure pollution due to the transportation of products by 
a freight train. Also, through managerial insights as well as learning experiences, we 
try to cut down the standard inventory expenditure. With a diameter of 1200 km 
(estimated), in this single managerial controlled industry, the different orders are put 
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down immediately using different shipment systems. The various expenditure 
information obtained from the industry is presented in Table 1.         

Table 1. Data information for the concerned industry 

Establishment 
expenditure per cycle 

$20000 

Carrying expenditure 
for each cycle in 

manufacturing plant 
per MT 

$5 
 

Degradation value in 
each cycle in 

manufacturing plant 
per each thing 

$10 

Degradation 
fraction 

0.1 

Contamination 
expenditure for a 

manufacturer for one 
MT 

$43.89 
 

Carrying expenditure 
for each cycle in dealer 

plant for one MT 
$10 

manufacturing price 
for each MT 

$327.56 

 

Social expenditure for 
Carbon per MT 

$417 

Shipment expenditure 
for unit gallon fuel 

$3.5 

Distance crossed in a 
freight train 

600 Miles 

 

The research problem is 

i) Is it possible to control the contamination and reach the least annual average 
expenditure in our proposed SI production? 

ii) What is the ideal quantity of order numbers which results in a minimum 
inventory cost? 

iii) Whether our cloudy fuzzy system is more effective to reduce the pollution of 
the supply chain as well as average inventory cost than the crisp and general fuzzy 
system. 

4. Formulation of crisp mathematical Model 

     We consider the above assumptions and notations for developing an imperfect 
production process by Bhattacharya et al. (2021). The proposed mathematical model 
for average inventory cost minimization is governed by 

𝑧 =
1

𝜏1
[𝐻𝐶 + 𝑃𝐶 + 𝐷𝐶 + 𝑇𝐶 + 𝑇𝑃𝐶 + 𝑆𝐶 + 𝑃𝑃𝐶]  

𝑧 =
ℎ𝑝𝑝

𝛿
(1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + 𝐶𝑑𝑝 (1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
)  +  

𝐶𝑝𝑝

𝛿
(1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + 𝐶𝑝𝑜𝑙𝑝 + 

𝐾1

𝜏1
+ 𝐶𝑡 ×

0.00424628𝑙𝑑 + 𝐶𝑐 × 0.0000431445𝑙𝑑 + 
ℎ𝑟𝑑𝜏1

2
 +

𝐾2

𝜏1
                             (8) 

This SC model is represented by 
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{
 
 
 

 
 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 =

ℎ𝑝𝑝

𝛿
(1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + 𝐶𝑑𝑝 (1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
)  +  

𝐶𝑝𝑝

𝛿
(1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
)

+ 𝐶𝑝𝑜𝑙𝑝 + 
𝐾1

𝜏1
+ 𝐶𝑡 × 0.00424628𝑙𝑑 + 𝐶𝑐 × 0.0000431445𝑙𝑑 + 

ℎ𝑟𝑑𝜏1

2
 +

𝐾2

𝜏1
  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝜏2 =
3

2
𝜏1, 𝜏3 =

5

2
𝜏1       

𝑞 =
𝑝

𝛿
(1 − 𝑒−𝛿𝜏1) = 𝑑𝜏1

𝑦 = 0.45 + 0.01𝑝 − 0.25 𝑙𝑜𝑔(𝑝)

     (9)    

5. Construction of SC Model under general fuzzy system 

     All our expenditure parameters (𝐶̅) with demand rate (d) in our prescribed SC 
model also obeys TFN is organized as 𝐶�̃� = 〈𝐶𝑖1, 𝐶𝑖2, 𝐶𝑖3〉, 𝑖 = 1,2, . . ,9, = 

(ℎ𝑝 , 𝐶𝑑, 𝐶𝑝, 𝐶𝑝𝑜𝑙 , 𝐾1, 𝐾2, ℎ𝑟 ,  𝐶𝑡 , 𝐶𝑐  ), and  �̃� =< 𝑑1, 𝑑2, 𝑑3 >. Also, due to fuzzification of 

parameters like demand rate, the order quantity, production rate, and pollution level 
will assume values in the following:  

{
 

 
 q̃ =< q1 , q2, q3 ≥< d1τ1, d2τ1, d3τ1 >

p̃ =< p1, p2, p3 ≥< d1τ1δ(1 − e
−δτ1), d2τ1δ(1 − e

−δτ1), d3τ1δ(1 − e
−δτ1) >

ỹ =< y1, y2, y3 >
=< 0.45 + 0.01p1 − 0.25 log p3 , 0.45 + 0.01p1 − 0.25 log p3 , 0.45 + 0.01p1 − 0.25 log p3 >

 

         (10) 

 Then the corresponding fuzzy problem of the crisp problem (9) can be written as 

{
 
 

 
 
min z̃ =̃ p̃ ∑ Cĩ fi

4
i=1 + C5̃ f5 + C6̃ f6 + d̃ ∑ Cĩ fi

9
i=7

subject to, τ2 =
3

2
τ1, τ3 =

5

2
τ1,

q̃ =̃
p̃

δ
(1 − e−δτ1) =̃  d̃τ1

ỹ =̃ 0.45 + 0.01p̃ − 0.25 log p̃

                                                                   (11) 

where 

{
 
 

 
 𝒇𝟏 =

𝟏

𝜹
(𝟏 +

𝒆−𝜹𝝉𝟏−𝟏

𝜹𝝉𝟏
) , 𝒇𝟐 = (𝟏 +

𝒆−𝜹𝝉𝟏−𝟏

𝜹𝝉𝟏
) ,

 𝒇𝟑 = 
𝟏

𝜹
(𝟏 +

𝒆−𝜹𝝉𝟏−𝟏

𝜹𝝉𝟏
) , 𝒇𝟒 = 𝟏, 𝒇𝟓 =

𝟏

𝝉𝟏
 , 𝒇𝟔 =

𝟏

𝝉𝟏
 ,

𝒇𝟕 =
𝝉𝟏

𝟐
 ,  𝒇𝟖 = 𝟎. 𝟎𝟎𝟒𝟐𝟒𝟔𝟐𝟖𝒍, 𝒇𝟗 = 𝟎. 𝟎𝟎𝟎𝟎𝟒𝟑𝟏𝟒𝟒𝟓𝒍

                                                          

(12) 

5.1. Defuzzification under general fuzzy system 

Obeying TFN, all of our fuzzy objectives can be written as  �̃� =< 𝑧1, 𝑧2, 𝑧3 > and the 

components are represented as: 

{

z1  = p1 ∑ Ci1 fi
4
i=1 + C51 f5 + C61 f6 + d1  ∑ Ci1 fi

9
i=7

z2  = p2∑ Ci2 fi
4
i=1 + C52 f5 + C62 f6 + d2  ∑ Ci2 fi

9
i=7

z3 = p3 ∑ Ci3 fi
4
i=1 + C53 f5 + C63 f6 + d3  ∑ Ci3 fi

9
i=7

                                                                 (13) 

Using equation (4), our fuzzy problem (11) is converted to Crisp cost minimization 

problem by replacing the respective index parameter with mentioned constraints are 

written as 

Minimize I(z̃) =
1

4
(z1 + 2z2 + z3)                                                                                     (14) 
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Subject to 

{
 

 𝜏2 =
3

2
𝜏1, 𝜏3 =

5

2
𝜏1, 𝐼(�̃�) =

(𝑑1+ 2𝑑2+ 𝑑3)

4
 ,

𝐼(�̃�) = 𝐼(�̃�)𝜏1, 𝐼(�̃�) =
𝐼(𝑝)

𝛿
(1 − 𝑒−𝛿𝜏1),

𝐼(�̃�) = 0.45 + 0.01 𝐼(𝑝) − 0.25 𝑙𝑜𝑔[𝐼(𝑝)]

                                                (15) 

and the values of 𝑧𝑖  , 𝑖 = 1, 2, 3 are found from (13) 

6. Formulation of Cloudy Fuzzy Model 

     With cloud type flexibility, all our cost parameters (𝐶̅) with indent rate( 𝑑) 
connected with the model represented as: 
  

{
𝐶̅ 𝑖
̃ = < 𝐶𝑖1, 𝐶𝑖2 , 𝐶𝑖3 >=< 𝐶𝑖2 (1 −

𝜌𝑐

1+𝑡
) , 𝐶𝑖2 , 𝐶𝑖2 (1 +

𝜎𝑐

1+𝑡
) >

 �̃� =< 𝑑1, 𝑑2, 𝑑3 >=< 𝑑2 (1 −
𝜌𝑑

1+𝑡
) , 𝑑2, 𝑑2 (1 +

𝜎𝑑

1+𝑡
) >

                                                (16) 

where 𝜌𝑐 , 𝜎𝑐 , 𝜌𝑑  , 𝜎𝑑  are fuzzy system deviation parameters for cost vector and 

demand rate respectively. 

Then the cloudy fuzzy problem will be of the form (11) whose fuzzy cost parameters 

(𝐶̅) and fuzzy demand rate ( �̃�) follow the membership function as per subsection 2.3. 

Simultaneously, the fuzzy order quantity, fuzzy production rate, and fuzzy pollution 

level are of the form given in (17). 

{
 

 
 �̃� =< 𝑞1, 𝑞2, 𝑞3 >=< 𝑑1𝜏1, 𝑑2𝜏1, 𝑑3𝜏1 >

𝑝 =< 𝑝1, 𝑝2, 𝑝3 >=< 𝑑1𝜏1𝛿(1 − 𝑒
−𝛿𝜏1), 𝑑2𝜏1𝛿(1 − 𝑒

−𝛿𝜏1), 𝑑3𝜏1𝛿(1 − 𝑒
−𝛿𝜏1) >

�̃� =< 𝑦1, 𝑦2, 𝑦3 >
=< 0.45 + 0.01𝑝1 − 0.25 𝑙𝑜𝑔 𝑝3 , 0.45 + 0.01𝑝1 − 0.25 𝑙𝑜𝑔 𝑝3 , 0.45 + 0.01𝑝1 − 0.25 𝑙𝑜𝑔 𝑝3 >

  

                  (17) 

6.1. Defuzzification of Cloudy Fuzzy Model 

     From equation (11), our fuzzy problem has been transformed into a similar Crisp 

problem using equation (7). All our fuzzy components are represented in (16-17). We 

have replaced the respective index parameter with mentioned constraints and might 

be presented as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐼(�̃�) =
1

2𝑡1
∫ (𝑧1 + 2𝑧2 + 𝑧3)
𝑡1
0

                                                                                   (18) 

subject to the constraints 
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{
 
 
 
 

 
 
 
 𝜏2 =

3

2
𝜏1, 𝜏3 =

5

2
𝜏1, 𝐼(d̃) = 𝑑2 +

𝑑2

4
(𝜎𝑑 − 𝜌𝑑)

log(1+𝑡1)

𝑡1
,

 𝐼(�̃�) = 𝑑2𝑡1 +
𝑑2

4
(𝜎𝑑 − 𝜌𝑑) log(1 + 𝑡1) ,

𝐼(𝑝) =
𝛿

1−𝑒−𝛿𝑡1
[𝑑2𝑡1 +

𝑑2

4
 (𝜎𝑑 − 𝜌𝑑) log(1 + 𝑡1)]

𝐼(�̃�) = 0.45 + 0.01 [
𝛿

1−𝑒−𝛿𝑡1
{𝑑2𝑡1 +

𝑑2

4
 (𝜎𝑑 − 𝜌𝑑) log(1 + 𝑡1)}]

−0.25 log [
𝛿

1−𝑒−𝛿𝑡1
[𝑑2𝑡1 +

𝑑2

4
 (𝜎𝑑 − 𝜌𝑑) log(1 + 𝑡1)]]

                                              (19) 

(For details see Appendix 2-3) 

and the values of new 𝑧𝑖  , 𝑖 = 1, 2, 3 can be obtained with the replacement of fuzzy 
components given in (16-17) into the relations (13). 

6.2. Solution Algorithm 

     Here, we shall develop a solution algorithm for solving the model under crisp, 
general fuzzy and cloudy fuzzy environment.  
Step 0: START. 
Step 1: Set the main nonlinear equality constrained crisp arithmetic optimization 
problem    𝑍(𝑋) stated in equation (9). 
Step 2: Optimize the crisp problem and store the results at 𝑋0 = (𝑍0 , 𝑌0). 
Step 3: Using the results of Step 2, formulate the non-linear problem via general fuzzy 
system in (11) and (12) and solve the defuzzified problem (14) and (15) via 
Yager’index method. 
Step 4: Store the results obtained from step 3 at 𝑋1 = (𝑍1 , 𝑌1). 
Step 5: Formulate the problem (9) in cloudy fuzzy system in (17) and solve the 
defuzzified cloudy system at (18) subject to the constraints (19). 
Step 6: Store the results obtained from step 5 at 𝑋2 = (𝑍2 , 𝑌2). 
Step 7: Compare the solutions by computing the inequalities 𝑋0 < 𝑋1 < 𝑋2 or 𝑋0 >
𝑋1 > 𝑋2 or 𝑋0 > 𝑋1 < 𝑋2 etc. 
Step 8: Take optimum solution 𝑋2 when  𝑋0 > 𝑋1 > 𝑋2. 
Step 9: END. 
 
The Pseudo Code of C programming is given below. 
_______________________________________________________________ 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include <time.h> 

void main() 

{ 

    int i,lower =100, upper=999, count=10; 

float t1[count],hp=5.0,d=600.0,lambda[count],p[count],z[count],del=0.01, 

cd=10.0, cp=327.56, cpol=43.89,k1=10000,ct=3.5,l=600.0,cc=417.0,k2=10000, 

    hr=4,f1,f2,f3,f4,f5,f6,f7,f8,f9; 

    for(i=0;i<count;i++) 

    { 

        t1[i]=(float)((rand()%(upper-lower+1))+lower)/1000; 

    } 

    for(i=0;i<count;i++) 

    { 
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        lambda[i]=del*t1[i]/(1-(exp(-del*t1[i]))); 

    } 

    for(i=0;i<count;i++) 

    { 

        p[i]=d*lambda[i]; 

    } 

    for(i=0;i<count;i++) 

    { 

 f1=(1+((exp(-del*t1[i]))-1)/(del*t1[i]))/del;  f2=del*f1; f3 = f1; f4 =1; f5 

=1/t1[i]; f6 = f5; f7 = 0.5*t1[i];  f8=0.00424628*l;  f9=0.0000431445*l;           

z[i]=p[i]*(hp*f1+cd*f2+cp*f3+cpol*f4)+k1*f5+k2*f6+d*(hr*f7+ct*f8+cc*f9); 

    } 

    float min_z = z[0]; int min_index = 0; 

    for(i=1;i<count;i++) 

    { 

        if(min_z>z[i]) 

        { 

            min_z=z[i]; 

            min_index=i; 

        } 

    } 

    float min_t1=t1[min_index];     float min_p = p[min_index];     float 

min_lambda[min_index];     float t2=1.5*min_t1;     float t3 = 2.5*min_t1;     

float q = d*min_t1;     float y = 0.45 + (0.01*min_p)-(0.25*log(min_p));  

printf("Z\t\t%f\n",min_z); printf("T1\t\t%f\n",min_t1);    printf("T2\t\t%f\n",t2);       

printf ("T3\t\t%f\n",t3);     printf ("P\t\t%f\n",min_p);     printf ("Q\t\t%f\n",q);    

printf ("Y\t\t%f\n",y);     printf ("D\t\t%f\n",d); 

} 

________________________________________________________________________ 
 

6.3. Schematic Diagram  

 Here we include a schematic diagram of the proposed study which shows the 
novelty of the article (Figure 1). 
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Input all cost components and demand 

Production sector Transportation

Inventory management model

Solve the model via crisp 
technique and store results 

in (X1, Z1 )

Solve the model via general 
fuzzy technique and store 

results in   ( X2 , Z2  )
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Take Min  and store it in Z along with optimum design 
variable X

Get the optimal result ( X , Z)

Pollution generation

Consider non-random uncertainty of 
the parameters

Consider non-random uncertainty and 
learning experiences

 

Figure 1. Schematic diagram of the study 

7.  Numerical Illustration 

     From the data set mentioned in Table 1 (subsection 3.1) and using the pollution 
function, the obtained minimized results have been displayed in Table 2. Also, the 
computed results using general fuzzy and cloudy fuzzy of the problem related to SC 
cost have been recorded in Table 2. We have considered fuzzy system parameters 
(𝜌𝑐 , 𝜎𝑐  , 𝜌𝑑  , 𝜎𝑑) = (0.3, 0.1, 0.2, 0.1) for our numerical computations. 

Table 2. Minimized solutions of SC model under different environments 

Model 
𝑝∗ 

(MT) 

𝑦∗ 

(%) 

𝜏1 
∗ 

(Year) 

𝜏2 
∗ 

(Year) 

𝜏3 
∗ 

(Year) 

𝑞∗ 

(MT) 

𝑧∗ 

($) 

𝑍∗ − 𝑍∗
𝑍∗

× 100% 

Crisp  611.37 4.96 0.3768 0.5652 0.9620 226.07 117542.80 0 

General 
Fuzzy 

596.12 4.82 0.3779 0.5668 0.9447 221.06 114160.20 -2.88 

Cloudy 
Fuzzy 

598.34 4.83 0.3751 0.5626 0.9377 220.27 111893.40 -4.81 
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Table 2 represents the optimal SC expenditure for minimal order quantity, cycle 
time, contamination level, and manufacturing rate for three separate cases which are 
crisp, general as well as cloudy fuzzy systems. Cloudy fuzzy results minimum SC 
expenditure $ 111893.40 for contamination share of 4.83% for the manufacturing 
time 0.3751 year with 220.27 MT of customer order. The SC expenditure grows to $ 
114160.20 while negligible minimization of the pollution level reaches to 4.82% for 
221.06 MT customer order using a normal fuzzy system. The crisp model of SC is 
remarkably costly ($ 117542.80) when air contamination level reaches to 4.96% for 
the customer order of 226.07 MT. Comparing with the crisp optimal solution, the SC 
cost-benefit for the cloudy fuzzy model becomes 4.81% which is superior to the 2.88% 
that was found for the general fuzzy system. 

8. Sensitivity Analysis 

     After obtaining the best efficient cost in cloudy fuzzy, the sensitivity dependence for 
the same has been investigated. For observing the variation of SC cost with 
contamination level, customer order, manufacturing rate with several expenditure 
parts, all fuzzy variables (𝜌𝑐 , 𝜎𝑐, 𝜌𝑑 , 𝜎𝑑) have been changed with (+50%, +30%, -30%, 
-50%) accordingly and the outcomes have represented in Table 3. 

Table 3. Sensitivity study with % variation of (𝜌𝑐, 𝜌𝑑 , 𝜎𝑐 , 𝜎𝑑) 

Fuzz
y 

para
mete

rs 

% 
chan

ge 
𝜏1 

∗ 

(Year) 

𝜏2 
∗ 

(Year) 

𝜏3 
∗ 

(Year) 

𝑦∗ 

(%) 

𝑞∗ 

(MT) 

𝑧∗ 

($) 

𝑝∗ 

(MT) 

𝑍∗ − 𝑍∗
𝑍∗

× 100% 

𝑌∗ − 𝑌∗
𝑌∗

× 100% 

 
𝜌𝑐  
0.3 

+50 0.372 0.558 0.930 4.83 218.42 108570.4 598.24 -7.63 -2.56 
+30 0.373 0.560 0.933 4.83 219.13 109900.3 598.28 -6.5 -2.54 
-30 0.377 0.565 0.942 4.84 221.38 113884.5 598.41 -3.11 -2.5 
-50 0.378 0.567 0.946 4.84 222.10 115210.8 598.45 -1.98 -2.5 

 
𝜎𝑐  
0.1 

+50 0.376 0.564 0.940 4.84 220.75 113211.4 598.37 -3.68 -2.52 
+30 0.376 0.563 0.939 4.84 220.56 112684.2 598.36 -4.13 -2.52 
-30 0.375 0.562 0.937 4.84 219.98 111102.4 598.33 -5.48 -2.52 
-50 0.374 0.561 0.936 4.84 219.79 110575.0 598.32 -5.93 -2.52 

 
𝜌𝑑  
0.2 

+50 0.561 0.842 1.403 4.78 323.30 116773.3 592.50 -0.65 -3.65 
+30 0.499 0.749 1.248 4.80 289.86 114235.8 595.15 -2.81 -3.15 
-30 0.374 0.560 0.934 4.91 222.26 112626.8 606.08 -4.18 -1.03 
-50 0.373 0.559 0.932 4.96 223.59 113115.2 611.25 -3.77 -0.02 

 
𝜎𝑑  
0.1 

+50 0.374 0.560 0.934 4.90 221.74 112786.4 604.78 -4.05 -1.27 
+30 0.374 0.561 0.935 4.87 221.15 112429.4 602.21 -4.35 -1.77 
-30 0.442 0.663 1.105 4.82 258.01 112359.9 596.85 -4.41 -2.8 
-50 0.481 0.722 1.203 4.81 279.99 113321.5 595.74 -3.59 -3.02 

    Table 3 shows that all the cloudy fuzzy system parameters are moderately sensitive 
relative to the crisp optimal solution. Our range of manufacturing run time, cycle time, 
air contamination share, the customer order, the manufacturing rate, and the average 
inventory cost assume value between (0.3719-0.5611) year, (0.9298-1.4028) year, 
(4.779-4.959) %, (218.42-323.30) MT, (592.50-611.25) MT and $ (108570.40-
116773.30) respectively. The overall cost-benefit lies within (0.65, 7.63) % and the 
contamination change within (0.02, 3.65) %. By this study, we also notice that the 
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maximum cost-benefit occurs from the 50% increment of all left fuzzy deviation 
parameters of all unit costs and the maximum contamination reduction occurs due to 
the 50% increment of left fuzzy deviation parameter of demand rate explicitly. 

9. Graphical Illustrations 

     Different types of figures depend on the obtained outputs on several optimized 
solutions represented in table 2 and table 3 has been drawn. 

 

Figure 2. Different inventory cost for separate cases 

Figure 2 shows minimum SC cost occurs due to cloudy fuzzy systems rather than crisp 
and general fuzzy systems. In the cloudy fuzzy system, the average SC cost takes a 
value around $112000 whereas it takes jumps to around $114000 and $117000 
corresponding to the general fuzzy and crisp model respectively. 

 

Figure 3. Average SC expenditure with different pollution 

     Figure 3 represents the dependence of average inventory expenditure with 
different contamination levels while other parameters remain independent. With 
contamination level reaches 4.833%, the expenditure goes to a minimum. But, at the 
smaller contamination level of 4.8 %, the average inventory expenditure reaches its 
maximum value. So, in place of achieving a cleaner environment, we are bound to pay 
more. The strong dependence of SC expenditure on contamination level is represented 
in the above graph. 
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Figure 4. Variation of average SC cost due to production run time 

     Expenditure of inventory with manufacturing time has represented in Figure 4. The 
least value for SC cost has been obtained with 0.3719 years of manufacturing time. 
Similarly, with an increase in production time, the greatest average SC cost has been 
obtained. 

 

Figure 5. Variation of pollution rate with respect to production rate 

     Naturally, the contamination level reaches its minimum with a minimum 
production rate. We see in Figure 5 that the pollution level remains almost stable 
within the manufacturing limit (598.24-598.45) MT. The pollution level increases 
slowly during the production range (592.5-598.24) MT. But when the production rate 
is increased (more than 598.45 MT) then the level of pollution is also increased almost 
exponentially. 
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Figure 6. Variation of order quantity with respect to production run time 

     Figure 6 reveals the dependence of customer order (MT) with manufacturing time 
(year). We see that the order quantity curve has increased with the maximum slope 
with the rise of production run time of more than 0.54 years. When the production run 
time lies within 0.37-0.38 years then the order quantity curve takes a horizontal line 
by taking value near 220 MT. But interestingly, the order quantity curve gets an arc 
upwards (concave) having the range 220-290 MT with manufacturing time 0.38 ~ 0.5 
year exclusively. 

 Figure 7 shows the surface-like structure of SC cost due to changes in production run 
time and the pollution level. We see that the cost is minimum at the pollution level 
4.94% and production run time 0.55 years approximately. Also, the average SC cost 
reaches its maximum at the minimum pollution level 4.78% and the production run 
time 0.55 years approximately.  
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     The surface curve gets a bend at the middle of the graph the optimum of which 
parametric values are production run time near 0.45 years, pollution level near 4.84 
%, and average SC cost near $1.12 x 105. 

 

 

 

 

 

 

 

 

Figure 7. Change of mean SC cost with customer order and manufacturing 

time 

    

  Figure 8 represents the dependence of mean SC expenditure on customer order and 
manufacturing time. With approximately 0.98 years of manufacturing time and a 
customer order of 220 MT the average expenditure reaches a minimum, but it attains 
the greatest value for 0.56-year manufacturing time and 320 MT customer order. 

10. Merits and Demerits 

     In this section we shall discuss the merits and demerits of the proposed approach. 

Merits: 
i) Pollution sensitive SC model has been analysed intelligently with the help of 

cloudy fuzzy number that gives the measure of learning experiences over 
time. 

ii) We incorporated a sensitivity analysis table to show the limitations and 
stability of the parameters involving in the model. 

iii) A comparative study with solution algorithm has been done to show the 
superiority of the optimum results in cloudy fuzzy system.  

iv) Our real case study data supports the learning model with new operational 
method. 

v) Any decision maker can easily use this method before going to final decision. 

Demerits: 
Since, this model is solely devoted to learning theory so, lack of information gathering 
can harm the model. However, the numerical study is not checked by some other 
learning theory to draw an absolute global decision. 
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Figure 8. Variation of system cost with respect to production time and order quantity 
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11. Conclusions 

     In this study, we have developed a two-channel pollution level on a two-layer supply 
chain deteriorated sponge iron manufacturing model under a cloudy fuzzy 
environment. For channel 1 of pollution corresponds to the number of items produced 
per time and that for the second channel it depends upon the distances travelled and 
the items transported. The production run time and the demand quantity may matter 
over the minimization of SC cost and pollution control. The basic novelty of the study is 
the incorporation of non-random uncertainty of the parameters of the model. We wish 
to know the average inventory cost, cycle time, pollution level (%) when the demand 
rate and all cost parameters are getting non- randomly uncertain. This problem has 
been solved by using general fuzzy set theory. Another important contribution of this 
article is to study the effect of learning experience in the inventory system. We want to 
study at what extent the decision maker could be able to reduce the average inventory 
cost and the pollution reduction for sustainable production within specific cycle time 
via learning experiences in the inventory process. To incorporate learning experience, 
we have introduced cloudy fuzzy number for the system parameters. We have also 
developed a solution algorithm and pseudo code of C programming to solve the 
mathematical model in different approaches like crisp, general fuzzy and cloudy fuzzy 
system. Moreover, we have incorporated a sensitivity analysis of the parameters to 
study the  limitations and their stability for model validation. The table shows that we 
can control 3.65 % pollution by controlling the demand cut of 50 %. The restoration of 
SC cost may rise to 7.63 % by the control of all unit cost components cut by 50% each. 
We see that the minimum average inventory cost $117542.80 occurs in cycle time 0.962 
year due to production 611.37 MT (metric ton), order quantity 226.07 MT with pollution 
contribution 4.96% in crisp problem. In general, fuzzy situation, the minimum average 
inventory cost $114160.20 occurs in cycle time 0.945 year due to production 596.12 MT 
(metric ton), order quantity 221.06 MT with pollution contribution 4.82% exclusively. 
In cloudy fuzzy approach, the minimum average inventory cost $111893.40 occurs in 
cycle time 0.938 year due to production 598.34 MT (metric ton), order quantity 220.27 
MT with pollution contribution 4.83% alone. So, the decision maker could be able to 
minimize the average inventory cost up to 2.88 % in general fuzzy approach and 4.81 % 
by applying cloudy fuzzy technique respectively. Also, for sustainability, a situation has 
come to balance production-demand-pollution-production run time altogether and this 
is only possible when the DM opts cloudy fuzzy system. However, some common 
managerial insights from this study can be drawn as follows:  

i) Cloudy fuzzy approach is better than crisp and general fuzzy approach. 
ii) The decision maker/manager could not ignore the issue of environmental 

pollution that are being deposited into the environment day by day from both the 
production process and transportation process. Rather, it should have to accept 
before going to furnish final decision over production-based inventory 
management problems. 

iii) Increase of production (order quantity) carries some pollution in environment. So, 
it can be reduced through sustainable production. 

 Scope of future work 

Various model can be studied using different fuzzy systems related to learning theory 
like Monsoon fuzzy theory, Fuzzy approximate reasoning, Doubt fuzzy approach etc. 
in near future. Taking different types of fuzzy set like Neutrosophic fuzzy sets, some 
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other complex and more realistic models can be developed in future. Also, several 
pollution function may be developed in the way of developing new research. 
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Appendix A 

A.1:  𝜏3 − 𝜏2 = 2(𝜏2 − 𝜏1),   𝜏1 = 2(𝜏2 − 𝜏1) This implies 𝜏2 =
3

2
𝜏1, 𝜏3 =

5

2
𝜏1 

A.2: The cloudy fuzzy objective value �̃� = 〈𝑧1, 𝑧2, 𝑧3〉 can be reduced as follows: 
 

{
 
 
 
 
 

 
 
 
 
 𝑧1  =

d2τ1δ

(1−e−δτ1)
{(
ℎ𝑝

𝛿
+ 𝐶𝑑 +

𝐶𝑝

𝛿
) (1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + 𝐶𝑝𝑜𝑙} (1 −

𝜌𝑑

1+t
) (1 −

𝜌𝑐

1+t
) + (

𝐾1

𝜏1
+ 

𝐾2

𝜏1
) (1 −

𝜌𝑐

1+t
)

+𝑑2 {
ℎ𝑟𝜏1

2
+ 𝐶𝑡0.00424628𝑙 + 𝐶𝑐0.0000431445𝑙} (1 −

𝜌𝑑

1+t
) (1 −

𝜌𝑐

1+t
)

𝑧2  =
d2τ1δ

(1−e−δτ1)
{(
ℎ𝑝

𝛿
+ 𝐶𝑑 +

𝐶𝑝

𝛿
) (1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + Cpol} +

K1

τ1
+ 

K2

τ1

+d2 {
hrτ1

2
+ Ct0.00424628l + Cc0.0000431445l}

z3  =
d2τ1δ

(1−e−δτ1)
{(
ℎ𝑝

𝛿
+ 𝐶𝑑 +

𝐶𝑝

𝛿
) (1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + 𝐶𝑝𝑜𝑙} (1 +

𝜎𝑑

1+t
) (1 +

𝜎𝑐

1+t
) + (

𝐾1

𝜏1
+ 

𝐾2

𝜏1
) (1 +

𝜎𝑐

1+t
)

+𝑑2 {
ℎ𝑟𝜏1

2
+ 𝐶𝑡0.00424628𝑙 + 𝐶𝑐0.0000431445𝑙} (1 +

𝜎𝑑

1+t
) (1 +

𝜎𝑐

1+t
)

   

Now, 
 
1

2
∫ (𝑍1 + 2𝑍2 + 𝑍3)𝑑𝑡
𝑡1
0

  

 

=
1

2
∫ [

𝑑2𝜏1𝛿

(1−𝑒−𝛿𝜏1)
{(
ℎ𝑝

𝛿
+ 𝐶𝑑 +

𝐶𝑝

𝛿
) (1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + 𝐶𝑝𝑜𝑙} × {2 + (1 −

𝜌𝑑

1+𝑡
) (1 −

𝜌𝑐

1+𝑡
) +

𝑡1
0

(1 +
𝜎𝑑

1+𝑡
) (1 +

𝜎𝑐

1+𝑡
)} + (

𝐾1

𝜏1
+ 

𝐾2

𝜏1
) (4 +

𝜎𝑐−𝜌𝑐

1+𝑡
) + 𝑑2 {

ℎ𝑟𝜏1

2
+ 𝐶𝑡0.00424628𝑙 +

𝐶𝑐0.0000431445𝑙} × {2 + (1 −
𝜌𝑑

1+𝑡
) (1 −

𝜌𝑐

1+𝑡
) + (1 +

𝜎𝑑

1+𝑡
) (1 +

𝜎𝑐

1+𝑡
)}] 𝑑𝑡  
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=
1

2
∫ [[(

𝑑2𝜏1𝛿

(1−𝑒−𝛿𝜏1)
) {(

ℎ𝑝

𝛿
+ 𝐶𝑑 +

𝐶𝑝

𝛿
) (1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + 𝐶𝑝𝑜𝑙} + 𝑑2 {

ℎ𝑟𝜏1

2
+

𝑡1
0

𝐶𝑡0.00424628𝑙 + 𝐶𝑐0.0000431445𝑙}] × {4 +
(𝜎𝑑+𝜎𝑐)−(𝜌𝑑+𝜌𝑐)

1+𝑡
+

(𝜎𝑑𝜎𝑐+𝜌𝑑𝜌𝑐)

(1+𝑡)2
} + (

𝐾1

𝜏1
+

 
𝐾2

𝜏1
) (4 +

𝜎𝑐−𝜌𝑐

1+𝑡
)] 𝑑𝑡 = [[(

𝑑2𝜏1𝛿

(1−𝑒−𝛿𝜏1)
) {(

ℎ𝑝

𝛿
+ 𝐶𝑑 +

𝐶𝑝

𝛿
) (1 +

𝑒−𝛿𝜏1−1

𝛿𝜏1
) + 𝐶𝑝𝑜𝑙} + 𝑑2 {

ℎ𝑟𝜏1

2
+

𝐶𝑡0.00424628𝑙 + 𝐶𝑐0.0000431445𝑙}] ×
1

2
{4𝑡1 + ((𝜎𝑑 + 𝜎𝑐) − (𝜌𝑑 + 𝜌𝑐)) 𝑙𝑜𝑔(1 +

𝑡1) +
𝑡1

1+𝑡1
(𝜎𝑑𝜎𝑐 + 𝜌𝑑𝜌𝑐)} +

1

2
(
𝐾1+𝐾2

𝜏1
) {4𝑡1 + (𝜎𝑐 − 𝜌𝑐) 𝑙𝑜𝑔(1 + 𝑡1)}]  

 

A.5   Adding left and right 𝛼- cuts of membership function of cloudy fuzzy demand �̃� 
we get, 
 𝐿−1(𝛼, 𝑡) + 𝑅−1(𝛼, 𝑡) = 𝑑1 + 𝑑3 + 𝛼(−𝑑1 + 2𝑑2 − 𝑑3)  
 

Now, 𝐼(�̃�) =
1

2𝑡1
∬ {𝑑1 + 𝑑3 + 𝛼(−𝑑1 + 2𝑑2 − 𝑑3)}
𝛼=1

𝛼=0
𝑑𝛼𝑑𝑡  

=
1

2𝑡1
∫ [{(𝑑1 + 𝑑3)𝛼}

1
0
− {(𝑑1 − 2𝑑2 + 𝑑3)

𝛼2

2
} 1
0
] 𝑑𝑡

𝑡1
𝑡=0

  

=
1

2𝑡1
∫ [(𝑑1 + 𝑑3) −

1

2
(𝑑1 − 2𝑑2 + 𝑑3)] 𝑑𝑡

𝑡1
𝑡=0

  

=
1

2𝑡1
∫

1

2
[(𝑑1 + 𝑑3 + 2𝑑2)]𝑑𝑡

𝑡1
𝑡=0

 =
1

2𝑡1
∫

1

2
[𝑑2 {(1 −

𝜌

1+𝑡
) + (1 +

𝜎

1+𝑡
)} + 2𝑑2] 𝑑𝑡

𝑡1
𝑡=0

  

=
1

2𝑡1
∫

𝑑2

2
[4 +

𝜎−𝜌

1+𝑡
] 𝑑𝑡

𝑡1
𝑡=0

 =
1

2𝑡1
[
𝑑2

2
{4𝑡1 + (𝜎 − 𝜌) 𝑙𝑜𝑔(1 + 𝑡1)}]  

= (
1

2𝑡1
×
𝑑2

2
× 4𝑡1) +

1

2𝑡1
×
𝑑2

2
× (𝜎 − 𝜌) 𝑙𝑜𝑔(1 + 𝑡1) = 𝑑2 +

𝑑2

4
(𝜎 − 𝜌)

𝑙𝑜𝑔(1+𝑡1)

𝑡1
  

= 𝑑2 [1 +
𝜎 − 𝜌

4

𝑙𝑜𝑔(1 + 𝑡1)

𝑡1
] 
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