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Abstract: In this work, we define Interval-valued Fermatean neutrosophic 
graphs (IVFNS) and present some operations on Interval-valued Fermatean 
neutrosophic graphs. Further, we introduce the concepts of Regular interval-
valued Fermatean neutrosophic graphs, Strong interval-valued Fermatean 
neutrosophic graphs, Cartesian, Composition, Lexicographic product of 
interval-valued Fermatean neutrosophic graphs. Finally, we give the 
applications of Interval-valued Fermatean neutrosophic graphs. 
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1. Introduction 

The concept of neutrosophic set theory was proposed by Jun et al. (2017). The idea 
of neutrosophic set which is a generalization of the fuzzy set (Zadeh, 1965), 
intuitionistic fuzzy set (Atanassov, 1986). The neutrosophic sets are characterized by 
a truth function (T), an indeterminate function (I) and a false function (F) 
independently. Smarandache (2019) introduced the concept of spherical 
neutrosophic oversets as generalization of spherical fuzzy sets. By bending the 
concept of single valued neutrosophic set and graph theory, different classes of 
neutrosophic graphs is discussed by Broumi et. al. (2016) and many works available 
in the literature (Broumi et al., 2016a, 2016b, 2016c, 2016d, 2022). Nagarajan et al. 
(2019) investigated the interval-valued neutrosophic graphs and its applications. 
Recently, Ajay et al. (2020, 2021) extended the concept of Pythagorean neutrosophic 
sets to graphs and called it Pythagorean neutrosophic graph (PNG) and investigated 
some of their properties. The same authors presented the idea of labelling of 
Pythagorean neutrosophic fuzzy graphs and investigate their properties. Ajay et al. 
(2022) studied the concept of regularity in PNG and introduced the ideas of regular, 
full edge regular, edge regular, and partially edge regular Pythagorean Neutrosophic 
graphs. In addition, a new MCDM method has been introduced using the Pythagorean 
neutrosophic graphs with an illustrative example. By integrating the concepts 
pythagorean neutrosophic fuzzy graph and Dombi operator. Furthermore, Ajay et al. 
(2021a) proposed a new extension of neutrosophic graph called Pythagorean 
Neutrosophic Dombi fuzzy graphs (PNDFG) and suggested some basic operations of 
PNDFG and computed the degree and total degree of a vertex of PNDFG. Akalyadevi et 
al. (2022) introduced the concept of spherical neutrosophic graph coloring and 
discussed some of their important properties also they suggested the chromatic 
number of spherical neutrosophic graph as a crisp number.  Duleba et al. (2021) 
applied the concept of Interval-valued spherical fuzzy AHP method to public 
transportation problem. Aydın and Kutlu Gündoğdu (2021) proposed a novel fuzzy 
MULTIMOORA method based on interval-valued spherical fuzzy sets to evaluate 
companies that are using Industry 4.0 technologies. Lathamaheswari et al. (2021) 
proposed the concept of Interval Valued Spherical Fuzzy Aggregation Operators and 
applied it for solving a Decision-Making Problem. Kutlu Gündoğdu et al. (2021) 
extended spherical fuzzy analytic hierarchy process to interval-valued spherical fuzzy 
AHP (IVSF-AHP) method and applied it to compare the service performances of 
several hospitals. Kutlu Gündoğdu et al. (2019) presented the idea of Spherical fuzzy 
sets (SFS) as an integration of Pythagorean fuzzy sets and neutrosophic sets. 
Smarandache (2017) proposed the concept of Spherical Neutrosophic Numbers. 
Senapati and Yager (2020) defined basic operators over the FFSs. On the other hand, 
division, and subtraction operations on FFSs were proposed. Liu et al. (2019) focused 
on a distance measure for Fermatean fuzzy linguistic term sets. Ganie (2022) proposed 
some novel distance measures for Fermatean fuzzy sets using t-conorms. On the other 
hand, Jeevaraj (2021) proposed the concept of interval-valued Fermatean fuzzy sets 
(IVFFSs) and establishes some Mathematical operations on the class of IVFFSs. A new 
total ordering principle on the class of IVFFNs is introduced. They implemented the 
interval-valued Fermatean fuzzy TOPSIS (IVFFTOPSIS) method for solving multi-
criteria decision-making problems. Based on neutrosophic Pythagorean sets, Stephen 
and Helen (2021) introduced the concept of interval-valued neutrosophic 
Pythagorean sets with dependent interval valued Pythagorean components and 
discussed some of its properties. Recently, Lakhwani et al. (2022) introduced a novel 
concept of Dombi neutrosophic graph and presented some kinds of Dombi 
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neutrosophic graph such as a regular Dombi neutrosophic graph, strong Dombi 
neutrosophic graph, complete Dombi neutrosophic graph, and complement Dombi 
neutrosophic graph and described some of their properties, also, and discussed some 
operations on Dombi neutrosophic graphs are defined.  

In this paper, we present the concept of Interval-valued Fermatean neutrosophic 
graphs (IVFNG) and the concepts of Regular interval-valued Fermatean neutrosophic 
graphs, Strong interval-valued Fermatean neutrosophic graphs, Cartesian, 
Composition, Lexicographic product of interval-valued Fermatean neutrosophic 
graphs. We also introduce some theorems and examples on IVFNG’s Finally, we give 
the applications of Interval-valued Fermatean neutrosophic graphs.  

2. Preliminaries 

The extension of crisp set theory with membership degree is known as Fuzzy set 
theory in which each element of the set gets a real number between 0 and 1. But in 
many real time situations, it is not always possible to give an exact degree of 
membership because of lack of knowledge, vague information, and so forth. To 
overcome this problem, we can use interval-valued fuzzy sets, which assign to each 
element a closed interval which approximates the “real,” but unknown, membership 
degree. The length of this interval is a measure for the uncertainty about the 
membership degree. An interval number I is an interval [𝑐−, 𝑐+] with 0 ≤  𝑐−  ≤  𝑐+  ≤
 1. The interval [c, 𝑐] is identified with the number 𝑐 ∈  [0, 1]. Let 𝐼[0, 1] be the set of 
all closed subintervals of [0, 1]. An extension of fuzzy sets by Zadeh (1965), Interval-
valued fuzzy sets which stated that the values of the membership degrees are intervals 
of numbers instead of the numbers.  It provides a more sufficient information about 
uncertainty than traditional fuzzy sets. In this section, we provide all the basic 
definitions of interval valued sets and its corresponding graphs. Table 1 depicts the 
types of sets and graphs for interval-valued fuzzy and neutrosophic environments. 
 

Table 1. Different types of Interval-valued sets and its graphs 

Type of 

Sets 
Definition 

Type of 

Graphs 
Definition 

Interval-valued 
Fuzzy set 
(IVFS) 
(Zadeh, 1965) 

𝐴 = {(𝑥, [𝜇𝐴
−(𝑥), 𝜇𝐴

+(𝑥)]): 𝑥 ∈ 𝑉} 

Interval-valued 
Fuzzy graph 
(IVFG)  
(Akram et al., 
2013)  

G = (A, B), where A = [𝜇𝐴
−(𝑥), 𝜇𝐴

+(𝑥)] is an 
interval-valued fuzzy set on V and B = 
[𝜇𝐵

−(𝑥), 𝜇𝐵
+(𝑥)]is an interval-valued fuzzy 

relation on E. 

Interval-valued 
Intuitionistic 
Fuzzy set 
(IVIFS)    
(Atanassov & 
Gargov, 1998) 

𝐴 = {(𝑥, [𝑇𝐴
−(𝑥), 𝑇𝐴

+(𝑥)]): ∈ 𝑉};  
𝐵 = {(𝑥, [𝐹𝐴

−(𝑥), 𝐹𝐴
+(𝑥)]): 𝑥 ∈ 𝑉} 

such that 0 ≤  𝑇𝐴
+(𝑥) + 𝐹𝐴

+(𝑥) ≤
 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝜖 𝑋 
 

Interval-valued 
Intuitionistic 
Fuzzy graph 
(IVIFG)  
(Mishra & Pal, 
2013) 

 𝜇𝐴: 𝑉 → 𝐷[0,1]; 𝜂𝐴: 𝑉 → 𝐷[0,1] such that 
0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) ≤ 1 , ∀ 𝑥 ∈ 𝑉 

 𝜇𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1] ;  𝜂𝐵: 𝐸 ⊆ 𝑉  ×
 𝑉 → 𝐷[0,1] 

𝜇𝐵
−((𝑥, 𝑦)) ≤ min( 𝜇𝐴

−(𝑥), 𝜇𝐴
−(𝑦)); 

𝜂𝐵
−((𝑥, 𝑦)) ≥ min( 𝜂𝐴

−(𝑥), 𝜂𝐴
−(𝑦)) 

𝜇𝐵
+((𝑥, 𝑦)) ≤ min( µ𝐴

+(𝑥), µ𝐴
+(𝑦)); 

𝜂𝐵
+((𝑥, 𝑦)) ≥ min( 𝜂𝐴

+(𝑥), 𝜂𝐴
+(𝑦)) 

 such that 0 ≤ 𝜇𝐵
+((𝑥, 𝑦)) + 𝜂𝐵

+((𝑥, 𝑦)) ≤

1 , ∀(𝑥, 𝑦) ∈ 𝐸 

Interval-valued 
Neutrosophic 
set (IVNS) 
(Broumi et al., 
2016) 

For each point 𝑥 ∈  𝑋, we have that 
𝑇𝐴(𝑥) =  [𝑇𝐴

−(𝑥), 𝑇𝐴
+(𝑥)], 𝐼𝐴(𝑥) =

 [𝐼𝐴
−(𝑥),  𝐼𝐴

+(𝑥)], 𝐹𝐴(𝑥) =
 [𝐹𝐴

−(𝑥), 𝐹𝐴
+(𝑥)] ⊆  [0, 1] and 0 ≤

 𝑇𝐴(𝑥)  +  𝐼𝐴(𝑥)  +  𝐹𝐴(𝑥)  ≤  3. 
 

Interval-valued 
Neutrosophic 
graph (IVNG)  
(Broumi et al., 
2016) 

𝐺 =  (𝐴, 𝐵), where 𝐴 =<
 [𝑇𝐴

−, 𝑇𝐴
+], [𝐼𝐴

−, 𝐼𝐴
+], [𝐹𝐴

−, 𝐹𝐴
+] > is an interval-

valued neutrosophic set on V; and 𝐵 = <
[𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+] > 𝑇𝐵

−: 𝑉  ×  𝑉 →
[0, 1], 𝑇𝐵

+: 𝑉  ×  𝑉 → [0, 1], 𝐼𝐵
−: 𝑉  ×  𝑉 →

[0, 1], 𝐼𝐵
+: 𝑉 ×  𝑉 → [0, 1] and 𝐹𝐵

−: 𝑉  ×  𝑉 →
[0,1], 𝐹𝐵

+: 𝑉  × 𝑉 → [0, 1] are such that 

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗})  ≤ min[𝑇𝐴

−(𝑣𝑖 ), 𝑇𝐴
−(𝑣𝑗 )], 

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖 ), 𝑇𝐴
+(𝑣𝑗 )], 
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Definition 2.1 (Akram et al., 2013) 

The Interval-valued Fuzzy Set (IVFS) 𝐴 in 𝑉 is defined by  = {(𝑥, { µ𝐴
− (𝑥), µ𝐴

+  (𝑥))} ∶

 𝑥 ∈  𝑉 } , where µ𝐴
− (𝑥) and µ𝐴

+ (𝑥) are fuzzy subsets of 𝑉 such that µ𝐴
− (𝑥) ≤  µA

+  (x) 
for all 𝑥 ∈  𝑉. For any two interval-valued sets 𝐴 =  [µ𝐴

− (𝑥), µ𝐴
+  (𝑥)] and 𝐵 =

 [µ𝐵
− (𝑥), µ𝐵

+  (𝑥)] in V. 
Define:  •  𝐴 ⋃ 𝐵 =  {(𝑥, 𝑚𝑎𝑥(µ𝐴

− (𝑥), µ𝐵
− (𝑥)), 𝑚𝑎𝑥(µ𝐴

+ (𝑥), µ𝐵
+ (𝑥))) ∶  𝑥 ∈  𝑉},  

•  𝐴 ⋂ 𝐵 =  {(𝑥, 𝑚𝑖𝑛(µ𝐴
− (𝑥), µ𝐵

− (𝑥)), 𝑚𝑖𝑛(µ𝐴
+ (𝑥), µ𝐵

+ (𝑥))) ∶  𝑥 ∈  𝑉}. 

𝐼𝐵
−({𝑣𝑖 , 𝑣𝑗}) ≥ max[𝐼𝐵

− (𝑣𝑖 ), 𝐼𝐵
−(𝑣𝑗  )], 

𝐼𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

+(𝑣𝑖 ), 𝐼𝐵
+(𝑣𝑗 )], 

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗 })  ≥  𝑚𝑎𝑥[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)] 

Interval-valued 
Pythagorean 
Fuzzy set 
(IVPFS) (Peng, 
2019). 
 

For each point 𝑥 ∈  𝑋, we have that 
𝑇𝐴(𝑥) =  [𝑇𝐴

−(𝑥),  𝑇𝐴
+(𝑥)],  𝐹𝐴(𝑥) =

 [𝐹𝐴
−(𝑥), 𝐹𝐴

+(𝑥)] ⊆  [0, 1] and 0 ≤
 𝑇𝐴

+(𝑥)2  +  𝐹𝐴
+(𝑥)2  ≤  1. 

 

Interval-valued 
Pythagorean 
Fuzzy graph 
(IVPFG) 
(Mohamed & 
Ali, 2018) 

𝐺 =  (𝐴, 𝐵), where 𝐴 =<  [𝑇𝐴
−, 𝑇𝐴

+],
[𝐹𝐴

−, 𝐹𝐴
+] > is an interval-valued 

neutrosophic set on V; and 𝐵 = < [𝑇𝐵
−, 𝑇𝐵

+],
[𝐹𝐵

−, 𝐹𝐵
+] > 𝑇𝐵

−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵
+: 𝑉  ×

 𝑉 → [0, 1], and 𝐹𝐵
−: 𝑉  ×  𝑉 →

[0,1], 𝐹𝐵
+: 𝑉  × 𝑉 → [0, 1] are such that 

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖 ), 𝑇𝐴
−(𝑣𝑗 )], 

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖 ), 𝑇𝐴
+(𝑣𝑗 )], 

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗  })  ≥  max[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)] 

such that 0 ≤  𝑇𝐴
+(𝑥)2  +  𝐹𝐴

+(𝑥)2  ≤  1. 

Interval-valued 
Fermatean 
Fuzzy set 
(IVFFS) – 
(Jeevaraj, 
2021) 

 
 
For each point 𝑥 ∈  𝑋, we have that 
𝑇𝐴(𝑥) =  [𝑇𝐴

−(𝑥), 𝑇𝐴
+(𝑥)], 𝐹𝐴(𝑥) =

 [𝐹𝐴
−(𝑥), 𝐹𝐴

+(𝑥)] ⊆  [0, 1] and 0 ≤
 𝑇𝐴

+(𝑥)3  +  𝐹𝐴
+(𝑥)3  ≤  1. 

 
 
 
 

Interval-valued 
Fermatean 
Fuzzy graph 
(IVFFG) 

𝐺 =  (𝐴, 𝐵), where 𝐴 =<  [𝑇𝐴
−, 𝑇𝐴

+],
[𝐹𝐴

−, 𝐹𝐴
+] > is an interval-valued 

neutrosophic set on V; and 𝐵 = < [𝑇𝐵
−, 𝑇𝐵

+],
[𝐹𝐵

−, 𝐹𝐵
+] > 𝑇𝐵

−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵
+: 𝑉  ×

 𝑉 → [0, 1], and 𝐹𝐵
−: 𝑉  ×  𝑉 →

[0,1], 𝐹𝐵
+: 𝑉  × 𝑉 → [0, 1] are such that 

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖 ), 𝑇𝐴
−(𝑣𝑗 )], 

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖 ), 𝑇𝐴
+(𝑣𝑗 )], 

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗 })  ≥  𝑚𝑎𝑥[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)] 

such that 0 ≤  𝑇𝐴
+(𝑥)3  +  𝐹𝐴

+(𝑥)3  ≤  1. 

Interval-valued 
Fermatean 
Neutrosophic 
set (IVFNS)    
(Broumi et al.,  
2022) 

A={〈𝑥, 𝑇𝐴(𝑥), IA(𝑥), FA(𝑥)〉| 𝑥 ∈ X } 
where 𝑇𝐴(𝑥) =
[TA

−(𝑥) , 𝑇𝐴
+(𝑥)], IA(𝑥)=[IA

−(𝑥) , IA
+(x)] 

and FA(𝑥) = [𝐹𝐴
−(𝑥), FA

+(𝑥)], 
 𝑇𝐴(𝑥): 𝑋 → 𝐷[0,1]  
IA(𝑥): 𝑋 → 𝐷[0,1], 𝐹𝐴(𝑥): 𝑋 →
𝐷[0,1] and 

0 ≤ (𝑇𝐴(𝑥))
𝟑

+(𝐹𝐴(𝑥))
𝟑

≤1 and 0 ≤

(𝐼𝐴 (𝑥))
𝟑

≤ 1 

0 ≤ (𝑇𝐴(𝑥))
𝟑

+(𝐹𝐴(𝑥))
𝟑

+(𝐼𝐴(𝑥))
𝟑

≤ 

2   means   
0 ≤
(𝑇𝐴

+(x))𝟑+(𝐼𝐴
+(𝑥))𝟑+(𝐹𝐴

+(𝑥))𝟑 ≤ 2    
∀ 𝑥 ∈  X 
 

Interval-valued 
Fermatean 
Neutrosophic 
graph (IVFNG)   

(Broumi et al.,  

2022) 

𝐺 =  (𝐴, 𝐵), where 𝐴 =<
 [𝑇𝐴

−, 𝑇𝐴
+], [𝐼𝐴

−, 𝐼𝐴
+], [𝐹𝐴

−, 𝐹𝐴
+] > is an interval-

valued Fermatean neutrosophic set on V; and 
𝐵 = < [𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+] > 

𝐸 satisfying the following condition: 
𝑇𝐴

−  ∶ 𝑉 →  [0, 1], 𝑇𝐴
+  ∶ 𝑉 →  [0, 1], 𝐼𝐴

−  ∶ 𝑉 →
 [0, 1], 𝐼𝐴

+: 𝑉 → [0, 1]𝑎𝑛𝑑 𝐹𝐴
−: 𝑉 →

[0, 1], 𝐹𝐴
+: 𝑉 → [0, 1], 

and 0 ≤  𝑇𝐴(𝑣𝑖)  +  𝐼𝐴(𝑣𝑖  )  + 𝐹𝐴(𝑣𝑖)  ≤
3, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑖  ∈  𝑉 (𝑖 = 1, 2, … , 𝑛 
The functions 𝑇𝐵

−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵
+: 𝑉  ×

 𝑉 → [0, 1], 𝐼𝐵
−: 𝑉  ×  𝑉 → [0, 1], 𝐼𝐵

+: 𝑉 ×
 𝑉 → [0, 1] and 𝐹𝐵

−: 𝑉  ×  𝑉 →
[0,1], 𝐹𝐵

+: 𝑉  × 𝑉 → [0, 1] are such that 

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖 ), 𝑇𝐴
−(𝑣𝑗 )], 

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖 ), 𝑇𝐴
+(𝑣𝑗 )], 

𝐼𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

− (𝑣𝑖 ), 𝐼𝐵
−(𝑣𝑗 )], 

𝐼𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

+(𝑣𝑖 ), 𝐼𝐵
+(𝑣𝑗  )], 

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)], 

denoting the degree of truth-membership, 
indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖 , 𝑣𝑗)  ∈  𝐸 

respectively, where  0 ≤  𝑇𝐵({𝑣𝑖  , 𝑣𝑗 })3  +

 𝐼𝐵({𝑣𝑖  , 𝑣𝑗  })3 +  𝐹𝐵({𝑣𝑖  , 𝑣𝑗  })3  ≤ 2 for all 

{𝑣𝑖 , 𝑣𝑗 }  ∈  𝐸 (𝑖, 𝑗 =  1, 2, … , 𝑛) means  0 ≤

(𝑇𝐵
+(𝑣𝑖  , 𝑣𝑗))

𝟑
+(𝐼𝐵

+(𝑣𝑖  , 𝑣𝑗))
𝟑

+(𝐹𝐵
+(𝑣𝑖  , 𝑣𝑗))

𝟑
≤ 

2    ∀ 𝑥 ∈  X. 
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Definition 2.2 (Akram et al., 2013) 
 
If 𝐺∗  =  (𝑉, 𝐸) is a graph, then by an Interval-valued Fuzzy Relation (IVFR) 𝐵 on a 

set 𝐸 we mean an interval-valued fuzzy set such that µ𝐵
− (𝑥𝑦)  ≤

 𝑚𝑖𝑛(µ𝐴
− (𝑥), µ𝐴

− (𝑦)), µ𝐵
+ (𝑥𝑦)  ≤  𝑚𝑖𝑛(µ𝐴

+(𝑥), µ𝐴
+ (𝑦)) for all 𝑥𝑦 ∈  𝐸. 

 
Definition 2.3 (Akram et al., 2013) 
By an Interval-valued Fuzzy Graph (IVFG) of a graph 𝐺∗  =  (𝑉, 𝐸) we mean a pair 

𝐺 =  (𝐴, 𝐵), where 𝐴 =  [µ𝐴
− , µ𝐴

+ ] is an interval-valued fuzzy set on 𝑉 and 𝐵 =
 [µ𝐵

− , µ𝐵
+ ] is an interval-valued fuzzy relation on 𝐸. 

 
Example 2.4 (Akram  et al., 2013) 
 Consider a graph 𝐺∗  =  (𝑉, 𝐸) such that 𝑉 =  {𝑥, 𝑦, 𝑧}, 𝐸 =  {𝑥𝑦, 𝑦𝑧, 𝑧𝑥} (Figure 1). 

Let A be an interval-valued fuzzy set of V and B be an interval-valued fuzzy set of 𝐸 ⊆
 𝑉 ×  𝑉 defined by 

𝐴 =   〈( 
𝑥 

0.2
 ,

𝑦 

0.3
 ,

𝑧

0.4
 ) , ( 

𝑥 

0.4
 ,

𝑦 

0.5
 ,

𝑧

0.5
 ) 〉 , 𝐵 = 〈( 

𝑥 

0.2
 ,

𝑦 

0.3
 ,

𝑧

0.4
 ) , ( 

𝑥𝑦 

0.3
 ,

𝑦𝑧 

0.4
 ,

𝑧𝑥

0.4
 ) 〉  

 

 
Figure 1. Interval-Valued Fuzzy Graph G 

 
Akram et al. (2013) introduced certain types of interval-valued fuzzy graphs 

including balanced interval-valued fuzzy graphs, neighbourly irregular interval-
valued fuzzy graphs, neighbourly total irregular interval-valued fuzzy graphs, highly 
irregular interval-valued fuzzy graphs, and highly total irregular interval-valued fuzzy 
graph.  Rashmanlou and Jun (2013) define three new operations on interval-valued 
fuzzy graphs; namely direct product, semi strong product and strong product. 

 
Definition 2.5 (Mishra & Pal, 2013; Ismayil & Ali, 2014) 
An Interval-valued Intuitionistic Fuzzy Set (IVIFS) 𝐴 in 𝑋, is given by 𝐴 =

{ 〈𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥)〉/ 𝑥𝜖 𝑋} where 𝜇𝐴: 𝑋 → [0, 1], 𝜂𝐴: 𝑋 → 𝐷[0, 1]. The intervals 𝜇𝐴(𝑥) 
and 𝜂𝐴(𝑥) denote the degree of membership and the degree of non-membership of the 
element 𝑥 to the set, where 𝜇𝐴(𝑥) = [ 𝜇𝐴

−(𝑥), 𝜇𝐴
+(𝑥)] and 𝜂𝐴(𝑥) = [𝜂𝐴

−(𝑥), 𝜂𝐴
+(𝑥)] with 

the condition 0 ≤  𝜇𝐴
+(𝑥) + 𝜂𝐴

+(𝑥) ≤  1 for all 𝑥𝜖 𝑋. 
 
Definition 2.6 (Mishra & Pal, 2013; Ismayil & Ali, 2014) 
An Interval-valued Intuitionistic Fuzzy Graph (IVIFG) with underlying set V is 

defined to be a pair 𝐺 =  (𝐴, 𝐵) where 
 the functions 𝜇𝐴: 𝑉 → 𝐷[0,1]; 𝜂𝐴: 𝑉 → 𝐷[0,1] denote the degree of 

membership and non-membership of the element 𝑥 ∈ 𝑉 respectively, such 

that 0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) ≤ 1 , ∀ 𝑥 ∈ 𝑉 
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 the functions 𝜇𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1] ; 𝜂𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1]   are 

defined by 

 𝜇𝐵
−((𝑥, 𝑦)) ≤ min( 𝜇𝐴

−(𝑥), 𝜇𝐴
−(𝑦))  ;  𝜂𝐵

−((𝑥, 𝑦)) ≥ min( 𝜂𝐴
−(𝑥), 𝜂𝐴

−(𝑦)) 

𝜇𝐵
+((𝑥, 𝑦)) ≤ min( µ

𝐴
+(𝑥), µ

𝐴
+(𝑦))  ;  𝜂𝐵

+((𝑥, 𝑦)) ≥ min( 𝜂
𝐴
+(𝑥), 𝜂

𝐴
+(𝑦)) 

such that 0 ≤ 𝜇𝐵
+((𝑥, 𝑦)) + 𝜂𝐵

+((𝑥, 𝑦)) ≤ 1 , ∀(𝑥, 𝑦) ∈ 𝐸 

Example 2.7 
𝐺 = (𝐴, 𝐵) defined on a graph 𝐺∗  =  (𝑉, 𝐸) such that 𝑉 =  {𝑥, 𝑦, 𝑧}, 𝐸 =

 {𝑥𝑦, 𝑦𝑧, 𝑧𝑥}, A is an interval valued intuitionistic fuzzy set of 𝑉and let 𝐵 is an interval-
valued intuitionistic fuzzy set of 𝐸 ⊆ 𝑉 𝑋 𝑉 (Figure 2).  

here 𝐴 = {〈𝑥, [0.5,0.7], [0.1,0.3]〉, 〈𝑦, [0.6,0.7], [0.1,0.3]〉 , 〈𝑧, [0.4,0.6], [0.2,0.4]〉 } 

𝐵 = {〈𝑥𝑦, [0.3,0.6], [0.2,0.4]〉, 〈𝑦𝑧, [0.3,0.5], [0.3,0.4]〉 , 〈𝑥𝑧, [0.3,0.5], [0.2,0.4]〉} 

 
 

Figure 2. Interval-Valued Intuitionistic Fuzzy Graph G 

 
Mishra and Pal (2013) introduced product of IVIFG and Ismayil and Ali (2014) 

defined On Strong Interval-Valued Intuitionistic Fuzzy Graph. Akram et al. (2013) 
studied the certain types of interval-valued fuzzy graphs. Xu et al. (2022) studied the 
concept of certain interval-valued intuitionistic fuzzy graphs and its applications.  
Peng and Yang (2016) introduced the concept of interval-valued Pythagorean fuzzy 
set. Mohamed and Ali (2018) introduced and studied interval-valued Pythagorean 
fuzzy graphs.  
 

Definition 2.8 (Mohamed & Ali, 2018) 
An Interval- valued Pythagorean Fuzzy set (IVPFS) A defined in a finite universe of 

discourse 𝑋 is given by 𝐴 = {〈𝑥, 𝜇𝐴(𝑥) = [ 𝜇𝐴
−(𝑥), 𝜇𝐴

+(𝑥)], 𝜂𝐴(𝑥) = [𝜂𝐴
−(𝑥), 𝜂𝐴

+(𝑥)]〉 /
 𝑥𝜖 𝑋} where 𝜇𝐴

−(𝑥), 𝜇𝐴
+(𝑥) ∶ 𝑋  [0,1] and 𝜂𝐴

−(𝑥), 𝜂𝐴
+(𝑥): 𝑋  [0,1] and 0 ≤

(𝜇𝐴
+(𝑥))2   + (𝜂𝐴

+(𝑥))2 ≤ 1 . Here 𝜇𝐴(𝑥) and 𝜂𝐴(𝑥)  denote the degree of membership 
and degree of non-membership of 𝑥 ∈ 𝑋  in 𝐴. 
 

Definition 2.9 (Mohamed & Ali, 2018) 
An Pythagorean Fuzzy Graph (PFG) with underlying set  𝑉 defined to be a pair 𝐺 =

(𝐴, 𝐵)where 
 the functions 𝜇𝐴: 𝑉 → 𝐷[0,1]; 𝜂𝐴: 𝑉 → 𝐷[0,1] denote the degree of 

membership and non-membership of the element 𝑥 ∈ 𝑉 respectively, such 

that 0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) ≤ 1 , ∀ 𝑥 ∈ 𝑉 

 the functions 𝜇𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1] ;  𝜂𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1]   are 

defined by 

 𝜇𝐵
−((𝑥, 𝑦)) ≤ min( 𝜇𝐴

−(𝑥), 𝜇𝐴
−(𝑦))  ;  𝜂𝐵

−((𝑥, 𝑦)) ≥ min( 𝜂𝐴
−(𝑥), 𝜂𝐴

−(𝑦)) 

𝜇𝐵
+((𝑥, 𝑦)) ≤ min( µ𝐴

+(𝑥), µ𝐴
+(𝑦))  ;  𝜂𝐵

+((𝑥, 𝑦)) ≥ min( 𝜂𝐴
+(𝑥), 𝜂𝐴

+(𝑦))  
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such that 0 ≤ 𝜇𝐵
+((𝑥, 𝑦))

2
+ 𝜂𝐵

+((𝑥, 𝑦))
2

≤ 1 , ∀(𝑥, 𝑦) ∈ 𝐸 

Mohamed and Ali (2018a) defined the strong interval-valued Pythagorean fuzzy 
graph and Cartesian product, composition and join of two strong interval-valued 
Pythagorean fuzzy graph are studied. 
 

Definition 2.10 (Broumi et al., 2016d) 
An Interval-valued Neutrosophic Set (IVNS) 𝐴 in 𝑋 is characterized by truth-

membership function 𝑇𝐴(𝑥) , indeterminacy-membership function 𝐼𝐴(𝑥) and falsity-
membership function 𝐹𝐴(𝑥). For each point 𝑥 ∈  𝑋, we have that 𝑇𝐴(𝑥) =
 [𝑇𝐴

−(𝑥), 𝑇𝐴
+(𝑥)], 𝐼𝐴(𝑥) =  [𝐼𝐴

−(𝑥), 𝐼𝐴
+(𝑥)], 𝐹𝐴(𝑥) =  [𝐹𝐴

−(𝑥), 𝐹𝐴
+(𝑥)] ⊆  [0, 1] and 0 ≤

 𝑇𝐴(𝑥)  + 𝐼𝐴(𝑥)  + 𝐹𝐴(𝑥)  ≤  3. 
 

Definition 2.11 (Broumi et al., 2016d) 
An Interval- valued Neutrosophic Graph (IVNG) of a graph 𝐺∗  =  (𝑉, 𝐸) we mean a 

pair 𝐺 =  (𝐴, 𝐵), where 𝐴 =<  [𝑇𝐴
−, 𝑇𝐴

+], [𝐼𝐴
−, 𝐼𝐴

+], [𝐹𝐴
−, 𝐹𝐴

+] > is an interval-valued 
neutrosophic set on V; and 𝐵 = 〈[𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+]〉  is an interval valued 

neutrosophic relation on 𝐸 satisfying the following condition: 
i. 𝑉 =  { 𝑣1 , 𝑣2 , … , 𝑣𝑛 }, such that 𝑇𝐴

−  ∶ 𝑉 →  [0, 1], 𝑇𝐴
+  ∶ 𝑉 →  [0, 1], 𝐼𝐴

−  ∶ 𝑉 →

 [0, 1],  𝐼𝐴
+: 𝑉 → [0, 1]  and 𝐹𝐴

−: 𝑉 → [0, 1], 𝐹𝐴
+: 𝑉 → [0, 1] denote the degree of 

truth-membership, the degree of indeterminacy-membership and falsity-

membership of the element 𝑦 ∈  𝑉, respectively, and 0 ≤  𝑇𝐴(𝑣𝑖)  +  𝐼𝐴(𝑣𝑖  )  +

𝐹𝐴(𝑣𝑖)  ≤ 3, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑖  ∈  𝑉 (𝑖 = 1, 2, … , 𝑛) 

ii. The functions 𝑇𝐵
−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵

+: 𝑉  ×  𝑉 → [0, 1], 𝐼𝐵
−: 𝑉  ×  𝑉 →

[0, 1], 𝐼𝐵
+: 𝑉 ×  𝑉 → [0, 1] and 𝐹𝐵

−: 𝑉  ×  𝑉 → [0,1], 𝐹𝐵
+: 𝑉  × 𝑉 → [0, 1] are 

such that  

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖  ), 𝑇𝐴
−(𝑣𝑗  )], 

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖  ), 𝑇𝐴
+(𝑣𝑗  )], 

𝐼𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

− (𝑣𝑖  ), 𝐼𝐵
−(𝑣𝑗  )], 

𝐼𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

+(𝑣𝑖  ), 𝐼𝐵
+(𝑣𝑗  )], 

  𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗  }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 

   𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗  })  ≥  𝑚𝑎𝑥[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)], 

denoting the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖  , 𝑣𝑗)  ∈  𝐸 respectively, where  0 ≤  𝑇𝐵({𝑣𝑖  , 𝑣𝑗  })  +

 𝐼𝐵({𝑣𝑖  , 𝑣𝑗  }) +  𝐹𝐵({𝑣𝑖  , 𝑣𝑗  })  ≤ 3 for all {𝑣𝑖  , 𝑣𝑗  } ∈  𝐸 (𝑖, 𝑗 =  1, 2, … , 𝑛). 

3. Interval-valued Fermatean neutrosophic graphs 

Fuzzy sets, Intuitionistic fuzzy sets, Neutrosophic sets are the generalization of the 
classical set and which are also the most popular mathematical tools in the study 
uncertainty.  Later, researchers combined these sets with graph structures and studied 
its properties in literature.  These combinations, Fuzzy graphs, Intuitionistic fuzzy 
graphs and Neutrosophic graphs are useful in decision making problems.  In an 
administrative setup, electing a leader among a group of people through the voting 
process, a judgement may give based on a candidate satisfies his expectations with a 
possibility of 0.80 and this candidate dissatisfies the expectations with a possibility of 
0.95 and neutrally give 0.85   But their sum is 2.80 (>2) and their square sum is 2.265 
(>2) and the sum of the cubes is equal to 1.9835 (<2). It is impossible to give an exact 
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degree of membership in every instant, because the lack of knowledge, vague 
information, and so forth may produce higher values to the membership values. To 
overcome this problem, we can use interval-valued fuzzy sets, which assign to each 
element a closed interval which approximates the “real,” but unknown, membership 
degree. In this series, we are adding one more class of graphs namely, interval-valued 
Fermatean neutrosophic graphs and certain types of interval-valued Fermatean 
neutrosophic graphs are introduced and discussed in this section. 

 
Definition 3.1  
An interval-valued Fermatean neutrosophic set (IVFNS) 𝐴 on the universe of 

discourse 𝑋 is of the structure: 
𝐴 = {〈𝑥, 𝑇𝐴(𝑥), IA(𝑥), FA(𝑥)〉| 𝑥 ∈ X }, where 𝑇𝐴(𝑥) = [TA

−(𝑥) , 𝑇𝐴
+(𝑥)], IA(𝑥) =

[IA
−(𝑥) , IA

+(x)] and FA(𝑥) = [𝐹𝐴
−(𝑥), FA

+(𝑥)] represents the truth-membership degree, 
indeterminacy-membership degree and falsity-membership degree, respectively. 
Consider the mapping 𝑇𝐴(𝑥): 𝑋 → 𝐷[0,1] , IA(𝑥): 𝑋 → 𝐷[0,1], 𝐹𝐴(𝑥): 𝑋 → 𝐷[0,1] and 

0 ≤ (𝑇𝐴(𝑥))
𝟑

+(𝐹𝐴(𝑥))
𝟑

≤1 and 0 ≤ (𝐼𝐴 (𝑥))
𝟑

≤ 1 

0 ≤ (𝑇𝐴(𝑥))
𝟑

+(𝐹𝐴(𝑥))
𝟑

+(𝐼𝐴(𝑥))
𝟑

≤ 2   means   

0 ≤ (𝑇𝐴
+(x))𝟑+(𝐼𝐴

+(𝑥))𝟑+(𝐹𝐴
+(𝑥))𝟑 ≤ 2    ∀ 𝑥 ∈  X 

 

Definition 3.2 
An Interval-Valued Fermatean Neutrosophic Graph (IVFNG) of a graph 𝐺∗  =

 (𝑉, 𝐸) we mean a pair 𝐺 =  (𝐴, 𝐵), where 𝐴 = 〈[𝑇𝐴
−, 𝑇𝐴

+], [𝐼𝐴
−, 𝐼𝐴

+], [𝐹𝐴
−, 𝐹𝐴

+]〉  is an 
interval-valued Fermatean neutrosophic set on V; and 𝐵 =
 〈[𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+〉] is an interval valued Fermatean  neutrosophic relation on 

𝐸 satisfying the following condition: 
i. 𝑉 =  { 𝑣1 , 𝑣2 , … , 𝑣𝑛 }, such that 𝑇𝐴

−  ∶ 𝑉 →  [0, 1], 𝑇𝐴
+  ∶ 𝑉 →  [0, 1], 𝐼𝐴

−  ∶ 𝑉 →

 [0, 1], 𝐼𝐴
+: 𝑉 → [0, 1] and  𝐹𝐴

−: 𝑉 → [0, 1], 𝐹𝐴
+: 𝑉 → [0, 1]denote the degree of 

truth -membership, the degree of indeterminacy-membership and falsity-

membership of the element 𝑦 ∈  𝑉, respectively, and 0 ≤  𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖  ) +

𝐹𝐴(𝑣𝑖) ≤ 3, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑖  ∈  𝑉 (𝑖 = 1, 2, … , 𝑛). 

ii. The functions 𝑇𝐵
−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵

+: 𝑉  ×  𝑉 → [0, 1], 𝐼𝐵
−: 𝑉  ×  𝑉 →

[0, 1], 𝐼𝐵
+: 𝑉 ×  𝑉 → [0, 1] and 𝐹𝐵

−: 𝑉  ×  𝑉 → [0,1], 𝐹𝐵
+: 𝑉  × 𝑉 → [0, 1] are 

such that  

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖  ), 𝑇𝐴
−(𝑣𝑗  )] ,   𝑇𝐵

+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴
+(𝑣𝑖  ), 𝑇𝐴

+(𝑣𝑗  )], 

𝐼𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

− (𝑣𝑖  ), 𝐼𝐵
−(𝑣𝑗  )],   𝐼𝐵

+({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵
+(𝑣𝑖  ), 𝐼𝐵

+(𝑣𝑗  )], 

   𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗  }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)],     𝐹𝐵

+({𝑣𝑖  , 𝑣𝑗  })  ≥  max[𝐹𝐵
+(𝑣𝑖), 𝐹𝐵

+(𝑣𝑗)] 

denoting the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖  , 𝑣𝑗)  ∈  𝐸 respectively, where  0 ≤  𝑇𝐵({𝑣𝑖  , 𝑣𝑗  })3  +

 𝐼𝐵({𝑣𝑖  , 𝑣𝑗  })3 +  𝐹𝐵({𝑣𝑖  , 𝑣𝑗  })3  ≤ 2 for all {𝑣𝑖  , 𝑣𝑗  }  ∈  𝐸 (𝑖, 𝑗 =  1, 2, … , 𝑛) means  0 ≤

(𝑇𝐵
+(𝑣𝑖  , 𝑣𝑗))

𝟑
+(𝐼𝐵

+(𝑣𝑖  , 𝑣𝑗))
𝟑

+(𝐹𝐵
+(𝑣𝑖  , 𝑣𝑗))

𝟑
≤ 2    ∀ 𝑥 ∈  X. 

 
Example 3.3 
Consider a graph 𝐺∗, such that 𝑉 =  {𝑥1, 𝑥2, 𝑥3}, 𝐸 =  {𝑥1𝑥2, 𝑥2𝑥3, 𝑥3𝑥4, 𝑥4𝑥1} 

(Figure 3). Let 𝐴 be an interval valued Fermatean neutrosophic subset of 𝑉 and 𝐵 be 
an interval valued Fermatean neutrosophic subset of 𝐸, denoted by 
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 𝐴 =

{
〈𝑥1[0.85,0.95], [0.90,0.95], [0.85,0.85]〉, 〈𝑥2, [0.85,0.90], [0.90,0.95], [0.85,0.90]〉,

〈𝑥3, [0.85,0.95], [0.95,0.95], [0.85,0.95]〉
} 

𝐵

= {
〈𝑥1𝑥2, [0.80,0.90], [0.90,0.95], [0.80,0.85]〉, 〈𝑥2𝑥3, [0.85,0.90], [0.90,0.95], [0.85,0.85]〉,

〈𝑥3𝑥1, [0.85,0.95], [0.90,0.95], [0.85,0.85]〉
} 

 

 
Figure 3. Interval-valued Fermatean Neutrosophic Graph  G 

 
Definition 3.4.  
Let 𝐺 =  (𝐴, 𝐵) be an IVFNG. 𝐺 is an interval valued regular Fermatean 

neutrosophic graph if it satisfies the following conditions: 
∑ 𝑇𝐵

−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2
   ; ∑ 𝑇𝐵

+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2
 

∑ 𝐼𝐵
−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

   ; ∑ 𝐼𝐵
+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

 

∑ 𝐹𝐵
−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

   ; ∑ 𝐹𝐵
+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

 

 
Definition 3.5.  
Let G = (A, B) be an IVFNG. G is an interval valued regular strong neutrosophic 

graph if it satisfies the following conditions 

𝑇𝐵
−(𝑣1, 𝑣2) = min(𝑇𝐴

−(𝑣1), 𝑇𝐴
−(𝑣2)) ; ∑ 𝑇𝐵

−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

 

𝑇𝐵
+(𝑣1, 𝑣2) = min(𝑇𝐴

+(𝑣1), 𝑇𝐴
+(𝑣2)) ; ∑ 𝑇𝐵

+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

 

𝐼𝐵
−(𝑣1, 𝑣2) = max(𝐼𝐴

−(𝑣1), 𝐼𝐴
−(𝑣2)) ;  ∑ 𝐼𝐵

−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

 

𝐼𝐵
+(𝑣1, 𝑣2) = max(𝐼𝐴

+(𝑣1), 𝐼𝐴
+(𝑣2)) ;  ∑ 𝐼𝐵

+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

 

𝐹𝐵
−(𝑣1, 𝑣2) = max(𝐹𝐴

−(𝑣1), 𝐹𝐴
−(𝑣2)) ;  ∑ 𝐹𝐵

−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

 

𝐹𝐵
+(𝑣1, 𝑣2) = max(𝐹𝐴

+(𝑣1), 𝐹𝐴
+(𝑣2)) ;  ∑ 𝐹𝐵

+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

 

Definition 3.6.  
Let G = (A, B) be an IVFNG. G is a strong interval valued regular strong neutrosophic 

graph if it satisfies the following conditions: 

𝑇𝐵
−(𝑣1, 𝑣2) = min(𝑇𝐴

−(𝑣1), 𝑇𝐴
−(𝑣2)) ;  
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𝐼𝐵
−(𝑣1, 𝑣2) = max(𝐼𝐴

−(𝑣1), 𝐼𝐴
−(𝑣2)) ; 

𝐹𝐵
−(𝑣1, 𝑣2) = max(𝐹𝐴

−(𝑣1), 𝐹𝐴
−(𝑣2)); 

𝑇𝐵
+(𝑣1, 𝑣2) = min(𝑇𝐴

+(𝑣1), 𝑇𝐴
+(𝑣2)) ; 

 𝐼𝐵
+(𝑣1, 𝑣2) = max(𝐼𝐴

+(𝑣1), 𝐼𝐴
+(𝑣2)) ;  

𝐹𝐵
+(𝑣1, 𝑣2) = max(𝐹𝐴

+(𝑣1), 𝐹𝐴
+(𝑣2)) ;  

such that 0≤ 𝑇𝐵
+(𝑣1, 𝑣2)) + I𝐵

+ (𝑣1, 𝑣2)) + 𝐹𝐵
+(𝑣1, 𝑣2))  ≤  3, for all 𝑣1, 𝑣2  ∈  𝐸 and 0 ≤

(𝑇𝐵
+(𝑣𝑖 , 𝑣𝑗))

𝟑
+(𝐼𝐵

+(𝑣𝑖 , 𝑣𝑗))
𝟑

+(𝐹𝐵
+(𝑣𝑖 , 𝑣𝑗))

𝟑
≤ 2    ∀ 𝑥 ∈  X 

 

 
Example 3.7.  
Let 𝐺 = (𝐴, 𝐵)be an Interval-valued Fermatean Neutrosophic graph with 𝑉 =

{𝑥1, 𝑥2, 𝑥3} (Figure 4). 

𝐴 = {
〈𝑥1, [0.85,0.95], [0.90,0.95], [0.85,0.85]〉, 〈𝑥2, [0.85,0.90], [0.90,0.95], [0.85,0.90]〉,

〈𝑥3, [0.85,0.95], [0.95,0.95], [0.85,0.95]〉,
},  

𝐵 = {
〈𝑥1𝑥2, [0.85,0.90], [0.90,0.95], [0.80,0.90]〉, 〈𝑥2𝑥3, [0.85,0.90], [0.95,0.95], [0.85,0.95]〉,

〈𝑥1𝑥3, [0.85,0.95], [0.95,0.95], [0.85,0.95]〉,
},  

 

 
Figure 4. Strong Interval-valued Fermatean Neutrosophic Graph  G 

 
Definition 3.8.  
Let 𝐴1 and 𝐴2 be interval-valued neutrosophic subsets of 𝑉1 and 𝑉2 respectively. Let 

𝐵1 and 𝐵2 interval-valued neutrosophic subsets of 𝐸1 and 𝐸2 respectively. The 
Cartesian product of two IVFNGs 𝐺1 and 𝐺2 is denoted by 𝐺1 × 𝐺2  =  (𝐴1 × 𝐴2 , 𝐵1 ×
𝐵2) and is defined as follows: 

i. (𝑇𝐴1
−  ×  𝑇𝐴2

−  )(𝑥1, 𝑥2) = min (𝑇𝐴1
−  (𝑥1), 𝑇𝐴2

−  (𝑥2)) 

(𝑇𝐴1
+   ×  𝑇𝐴2

+  )(𝑥1, 𝑥2) = min (𝑇𝐴1
+ (𝑥1), 𝑇𝐴2

+ (𝑥2)) 

(𝐼𝐴1
−  ×  𝐼𝐴2

−  )(𝑥1, 𝑥2) = max (𝐼𝐴1
− (𝑥1), 𝐼𝐴2

− (𝑥2)) 

(𝐼𝐴1
+  ×  𝐼𝐴2

+ )(𝑥1, 𝑥2) = max (𝐼𝐴1
+ (𝑥1), 𝐼𝐴2

+ (𝑥2)) 

(𝐹𝐴1
−  ×  𝐹𝐴2

−  )(𝑥1, 𝑥2) = max (𝐹𝐴1
− (𝑥1 ), 𝐹𝐴2

− (𝑥2)) 

 (𝐹𝐴1
+  ×  𝐹𝐴2

+ )(𝑥1, 𝑥2) = max (𝐹𝐴1
+ (𝑥1), 𝐹𝐴2

+ (𝑥2)) 𝑓𝑜𝑟 𝑎𝑙𝑙 ( 𝑥1, 𝑥2) ∈  𝑉 

ii. (𝑇𝐵1
−  ×  𝑇𝐵2

−  )((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1
− (𝑥), 𝑇𝐵1

− (𝑥2𝑦2)) 

(𝑇𝐵1
+  ×  𝑇𝐵2

+ )((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1
+ (𝑥), 𝑇𝐵1

+ (𝑥2𝑦2)) 

(𝐼𝐵1
−  ×  𝐼𝐵2

−  )((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1
− (𝑥), 𝐼𝐵2

− (𝑥2𝑦2)) 

(𝐼𝐵1
+  ×  𝐼𝐵2

+ )((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1
+ (𝑥), 𝐼𝐵2

+ (𝑥2𝑦2)) 
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(𝐹𝐵1
−  ×  𝐹𝐵2

−  )((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐹𝐴1
− (𝑥), 𝐹𝐵2

− (𝑥2𝑦2)) 

(𝐹𝐵1
+  ×  𝐹𝐵2

+  )((𝑥, 𝑥2 )(𝑥, 𝑦2  )) =  max (𝐹𝐴1
+ (𝑥), 𝐹𝐵2

+ (𝑥2𝑦2 )) 

∀ 𝑥 ∈  𝑉1 𝑎𝑛𝑑 ∀ 𝑥2𝑦2 ∈  𝐸2 

 

iii. (𝑇𝐵1
−  ×  𝑇𝐵2

−  ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  min (𝑇𝐵1
− (𝑥1𝑦1), 𝑇𝐴2

− (𝑧)) 

     (𝑇𝐵1
+  ×  𝑇𝐵2

+  ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1
+ (𝑥1𝑦1), 𝑇𝐴2

+ (𝑧)) 

     (𝐼𝐵1
−  ×  𝐼𝐵2

− )((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝐵1
− (𝑥1𝑦1), 𝐼𝐴2

− (𝑧)) 

     (𝐼𝐵1
+  ×  𝐼𝐵2

+ )((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝐵1
+ (𝑥1𝑦1), 𝐼𝐴2

+ (𝑧)) 

     (𝐹𝐵1
−  ×  𝐹𝐵2

−  )((𝑥1, 𝑧) (𝑦1 , 𝑧)) = max (𝐹𝐵1
− (𝑥1𝑦1), 𝐹𝐴2

− (𝑧)) 

     (𝐹𝐵1
+  ×  𝐹𝐵2

+ )((𝑥1, 𝑧)(𝑦1, 𝑧)) = max (𝐹𝐵1
+ (𝑥1𝑦1), 𝐹𝐴2

+ (𝑧)) 

∀ 𝑧 ∈  𝑉2 𝑎𝑛𝑑 ∀ 𝑥1𝑦1  ∈  𝐸1 

Example 3.9.  
Let 𝐺1

∗  = (𝐴1, 𝐵1)and 𝐺2
∗ =  (𝐴2, 𝐵2) be two graphs where 𝑉1  = {𝑢1, 𝑢2}, 𝑉2  =

{𝑣1, 𝑣2}. Consider two interval valued Fermatean neutrosophic graphs (Figure 5 and 
6):  
𝐴1

= {〈u1, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉, 〈𝑢2, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉, },  
𝐵1 = {〈𝑢1𝑢2, [0.85,0.90], [0.95,0.95], [0.95,0.95]〉} ;  
𝐴2

= {〈𝑣1, [0.80,0.90], [0.85,0.95], [0.95,0.85]〉, 〈𝑣2, [0.95,0.90], [0.95,0.95], [0.80,0.85]〉, }, 
 𝐵2 = {〈𝑣1𝑣2, [0.80,0.90], [0.95,0.95], [0.95,0.85]〉}. 
 

 
 
 

 
Figure 6. Cartesian product of two IVFNGs  𝐺1  × G2 

 
Definition 3.10.  

Let 𝐺$   =  𝐺1
$ × 𝐺2

$  = (𝑉1 × 𝑉2, 𝐸) be the composition of two graphs where 𝐸 =
 {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈  𝑉1, 𝑥2𝑦2  ∈  𝐸2}  ∪ {(𝑥1, 𝑧) (𝑦1, 𝑧) /𝑧 ∈  𝑉2, 𝑥1𝑦1  ∈  𝐸1} ∪
 {( 𝑥1, 𝑥2) ( 𝑦1 , 𝑦2) |𝑥1𝑦1  ∈  𝐸1, 𝑥2  ≠  𝑦2}, then the composition of interval valued 
Fermatean neutrosophic graphs 𝐺1[ 𝐺2]  =  (𝐴1  ∘  𝐴2, 𝐵1  ∘  𝐵2) is an interval valued 
Fermatean neutrosophic graphs defined by:  

Figure 5.  Interval − valued Fermatean Neutrosophic Graphs G1 , G2  
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i. (𝑇𝐴1
−  ∘  𝑇𝐴2

−  ) (𝑥1, 𝑥2)  =  min (𝑇𝐴1
− (𝑥1), 𝑇𝐴2

− (𝑥2))  

 (𝑇𝐴1
+ ∘  𝑇𝐴1

+ ) (𝑥1, 𝑥2)  =  min (𝑇𝐴1
+ (𝑥1), 𝑇𝐴1

+ (𝑥2)) 

(𝐼𝐴1
− ∘ 𝐼𝐴2

−  )(𝑥1, 𝑥2) = max (𝐼𝐴1
− (𝑥1), 𝐼𝐴2

− (𝑥2)) 

(𝐼𝐴1
+ ∘ 𝐼𝐴2

+ )(𝑥1, 𝑥2) = max (𝐼𝐴1
+ (𝑥1), 𝐼𝐴2

+ (𝑥2)) 

 (𝐹𝐴1
− ∘ 𝐹𝐴2

−   )(𝑥1, 𝑥2) = max (𝐹𝐴1
− (𝑥1), 𝐹𝐴2

− (𝑥2)) 

 (𝐹𝐴1
+ ∘ 𝐹𝐴2

+  ) (𝑥1, 𝑥2)  =  max (𝐹𝐴1
+ (𝑥1), 𝐹𝐴2

+ (𝑥2)) ∀ 𝑥1  ∈  𝑉1, 𝑥2  ∈  𝑉2 

ii.  (𝑇𝐴1
− ∘ 𝑇𝐴2

−  )((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1
− (𝑥), 𝑇𝐵2

− (𝑥2𝑦2)) 

 (𝑇𝐴1
+ ∘ 𝑇𝐴1

+ )((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1
+ (𝑥), 𝑇𝐵2

+ (𝑥2𝑦2)) 

(𝐼𝐴1
− ∘ 𝐼𝐴2

−  ) ((𝑥, 𝑥2)(𝑥, 𝑦2))  =  max (𝐼𝐴1
− (𝑥), 𝐼𝐵2

− (𝑥2𝑦2))  

(𝐼𝐴1
+ ∘ 𝐼𝐴2

+ ) ((𝑥, 𝑥2)(𝑥, 𝑦2))  =  max (𝐼𝐴1
+ (𝑥), 𝐼𝐵2

+ (𝑥2𝑦2)) 

 (𝐹𝐴1
− ∘ 𝐹𝐴2

−   )((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐹𝐴1
− (𝑥), 𝐹𝐵2

− (𝑥2𝑦2)) 

(𝐹𝐴1
+ ∘ 𝐹𝐴2

+  ) ((𝑥, 𝑥2)(𝑥, 𝑦2))  =  max (𝐹𝐴1
+ (𝑥), 𝐹𝐵2

+ (𝑥2𝑦2)) ∀ 𝑥 ∈  𝑉1, ∀𝑥2𝑦2  ∈  𝐸2 

iii. (𝑇𝐵1  
− ∘  𝑇𝐵2  

− ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  min (𝑇𝐵1  
− (𝑥1𝑦1), 𝑇𝐴2

−(𝑧))  

(𝑇𝐵1  
+ ∘ 𝑇𝐵2  

+ ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  min (𝑇𝐵1  
+ (𝑥1𝑦1), 𝑇𝐴2

+(𝑧))  

(𝐼𝐵1  
− ∘ 𝐼𝐵2  

−  ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  max (𝐼𝐵1  
− (𝑥1𝑦1), 𝐼𝐴2

− (𝑧))  

(𝐼𝐵1  
+ ∘ 𝐼𝐵2  

+ ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  max (𝐼𝐵1  
+ (𝑥1𝑦1), 𝐼𝐴2

+ (𝑧))  

(𝐹𝐵1  
− ∘ 𝐹𝐵2  

−  ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  max (𝐹𝐵1  
− (𝑥1𝑦1), 𝐹𝐴2

− (𝑧))  

(𝐹𝐵1  
+ ∘  𝐹𝐵2  

+ ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) =  max (𝐹𝐵1  
+ (𝑥1𝑦1), 𝐹𝐴2

+ (𝑧)) ∀ 𝑧 ∈  𝑉2, ∀𝑥1𝑦1

∈  𝐸1 ;  

iv. (𝑇𝐵1  
− ∘  𝑇𝐵2  

−  ) ((𝑥1, 𝑥2) (𝑦1, 𝑦2))  =  min (𝑇𝐴2
− (𝑥2), 𝑇𝐴2

− (𝑦2), 𝑇𝐵1
− (𝑥1𝑦1))   

 (𝑇𝐵1  
+ ∘  𝑇𝐵2  

+ )((𝑥1, 𝑥2)(𝑦1 , 𝑦2)) = min (𝑇𝐴2
+ (𝑥2), 𝑇𝐴2

+ (𝑦2), 𝑇𝐵1
+ (𝑥1𝑦1)) 

(𝐼𝐵1  
− ∘  𝐼𝐵2  

−  )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) = max (𝐼𝐴2
− (𝑥2), 𝐼𝐴2

− (𝑦2), 𝐼𝐵1
− (𝑥1𝑦1)) 

(𝐼𝐵1  
+ ∘  𝐼𝐵2  

+ )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) = max (𝐼𝐴2
+ (𝑥2), 𝐼𝐴2

+ (𝑦2), 𝐼𝐵1
+ (𝑥1𝑦1)) 

(𝐹𝐵1
−  ∘  𝐹𝐵2

−  )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) = max (𝐹𝐴2
− (𝑥2), 𝐹𝐴2

− (𝑦2), 𝐹𝐵1
− (𝑥1𝑦1)) 

( 𝐹𝐵1
+  ∘  𝐹𝐵2

+  )((𝑥1, 𝑥2)(𝑦1 , 𝑦2)) = max ( 𝐹𝐴2
+ (𝑥2 ), 𝐹𝐴2

+ (𝑦2 ), 𝐹𝐵1
+ (𝑥1𝑦1 )),  

∀ (𝑥1, 𝑥2)( 𝑦1, 𝑦2)  ∈  𝐸0  − 𝐸, 𝑤ℎ𝑒𝑟𝑒 𝐸0 =  𝐸 ∪  {( 𝑥1, 𝑥2) ( 𝑦1, 𝑦2) |𝑥1𝑦1  

∈  𝐸1, 𝑥2  ≠  𝑦2}. 

Example 3.11.  
Let 𝐺1

∗  = (𝐴1, 𝐵1)and 𝐺2
∗ =  (𝐴2, 𝐵2) be two graphs where 𝑉1  = {𝑢1, 𝑢2}, 𝑉2  =

{𝑣1, 𝑣2}. Consider two interval valued Fermatean neutrosophic graphs (Figure 7 and 
8):  
𝐴1 = {〈u1, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉, 〈u2, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉},  
𝐵1 = {〈𝑢1𝑢2, [0.85,0.90], [0.95,0.95], [0.95,0.95]〉 } ;  
𝐴2 = {〈𝑣1, [0.80,0.90], [0.85,0.95], [0.95,0.85]〉, 〈𝑣2, [0.95,0.90], [0.95,0.95], [0.80,0.85]〉}, 
 𝐵2 = {〈𝑣1𝑣2, [0.80,0.90], [0.95,0.95], [0.95,0.85]〉}. 
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Figure 7. Interval − valued Fermatean Neutrosophic Graphs G1 , G2 

 

 
 

Figure 8. Composition of interval valued Fermatean neutrosophic graphs 𝐺1[ 𝐺2]  
 

Definition 3.12.  
The union 𝐺1  ∪  𝐺2 =  (𝐴1  ∪  𝐴2, 𝐵1  ∪  𝐵2) of two interval valued Fermatean 

neutrosophic graphs of the graphs 𝐺1
∗ and 𝐺2

∗ is an interval-valued Fermatean 
neutrosophic graph of 𝐺1

∗  ∪  𝐺2
∗ . 

 (𝑇𝐴1

−    ∪  𝑇𝐴2

−   )(𝑥) =  {

𝑇𝐴1

− (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝑇𝐴2

− (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

min (𝑇𝐴1

− (𝑥), 𝑇𝐴2

− (𝑥)) if 𝑥 ∈  V1  ∩  V2,

, 

 (𝑇𝐴1

+    ∪  𝑇𝐴2

+   )(𝑥) =  {

𝑇𝐴1

+ (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝑇𝐴2

+ (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

min (𝑇𝐴1

+ (𝑥), 𝑇𝐴2

+ (𝑥)) if 𝑥 ∈  V1  ∩  V2,

  

 (𝐼𝐴1

−    ∪  𝐼𝐴2

−   )(𝑥) =  {

𝐼𝐴1

− (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝐼𝐴2

− (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

max (𝐼𝐴1

− (𝑥), 𝐼𝐴2

− (𝑥)) if 𝑥 ∈  V1  ∩  V2,

 

 (𝐼𝐴1

+    ∪  𝐼𝐴2

+   )(𝑥) =  {

𝐼𝐴1

+ (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝐼𝐴2

+ (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

max (𝐼𝐴1

+ (𝑥), 𝐼𝐴2

+ (𝑥)) if 𝑥 ∈  V1  ∩  V2,

 

 (𝐹𝐴1

−    ∪  𝐹𝐴2

−   )(𝑥) =  {

𝐹𝐴1

− (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝐹𝐴2

− (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

max (𝐹𝐴1

− (𝑥), 𝐹𝐴2

− (𝑥)) if 𝑥 ∈  V1  ∩  V2,

 

 (𝐹𝐴1

+    ∪  𝐹𝐴2

+   )(𝑥) =  {

𝐹𝐴1

+ (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝐹𝐴2

+ (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

max (𝐹𝐴1

+ (𝑥), 𝐹𝐴2

+ (𝑥)) if 𝑥 ∈  V1  ∩  V2,
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 (𝑇𝐵1

−    ∪  𝑇𝐵2

−   )(𝑥𝑦) =  {

𝑇𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝑇𝐵2

− (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

min (𝑇𝐵1

− (𝑥𝑦), 𝑇𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 

 (𝑇𝐵1

+    ∪  𝑇𝐵2

+   )(𝑥𝑦) =  {

𝑇𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝑇𝐵2

+ (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

min (𝑇𝐵1

+ (𝑥𝑦), 𝑇𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 

 (𝐼𝐵1

−    ∪  𝐼𝐵2

−   )(𝑥𝑦) =  {

𝐼𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝐼𝐵2

− (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

min (𝐼𝐵1

− (𝑥𝑦), 𝐼𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 

 (𝐼𝐵1

+    ∪  𝐼𝐵2

+   )(𝑥𝑦) =  {

𝐼𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝐼𝐵2

+ (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

max (𝐼𝐵1

+ (𝑥𝑦), 𝐼𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 

 𝐹𝐵1

−    ∪  𝐹𝐵2

−   )(𝑥𝑦) =  {

𝐹𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝐹𝐵2

− (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

max (𝐹𝐵1

− (𝑥𝑦), 𝐹𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 

 (𝐹𝐵1

+    ∪  𝐹𝐵2

+   )(𝑥𝑦) =  {

𝐹𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝐹𝐵2

+ (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

max (𝐹𝐵1

+ (𝑥𝑦), 𝐹𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 

Definition 3.13.  
The join of 𝐺1  +  𝐺2  =  (𝐴1  +  𝐴2 , 𝐵1  +  𝐵2 ) interval valued neutrosophic graphs 

𝐺1 and 𝐺2 of the graphs 𝐺1
∗ and 𝐺2

∗ is defined as follows: 

 (𝑇𝐴1

−   +  𝑇𝐴2

−   )(𝑥) =  {

𝑇𝐴1

− (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1  

𝑇𝐴2

− (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

 min(𝑇𝐴1

− , 𝑇𝐴2

− )(𝑥) if 𝑥 ∈  V1 ∪  V2,

, 

 (𝑇𝐴1

+   +  𝑇𝐴2

+   )(𝑥) =  {

𝑇𝐴1

+ (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1  

𝑇𝐴2

+ (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

 min(𝑇𝐴1

+ , 𝑇𝐴2

+ )(𝑥) if 𝑥 ∈  V1 ∪  V2,

  

 (𝐼𝐴1

−   +  𝐼𝐴2

−   )(𝑥) =  {

𝐼𝐴1

− (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1  

𝐼𝐴2

− (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

 max(𝐼𝐴1

− , 𝐼𝐴2

− )(𝑥) if 𝑥 ∈  V1 ∪  V2,

 

 (𝐼𝐴1

+   +  𝐼𝐴2

+   )(𝑥) =  {

𝐼𝐴1

+ (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1  

𝐼𝐴2

+ (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

 max(𝐼𝐴1

+ , 𝐼𝐴2

+ )(𝑥) if 𝑥 ∈  V1 ∪  V2,

 

 (𝐹𝐴1

−   + 𝐹𝐴2

−   )(𝑥) =  {

𝐹𝐴1

− (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1  

𝐹𝐴2

− (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

 max(𝐹𝐴1

− , 𝐹𝐴2

− )(𝑥) if 𝑥 ∈  V1 ∪ V2,
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 (𝐹𝐴1

+   + 𝐹𝐴2

+   )(𝑥) =  {

𝐹𝐴1

+ (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1  

𝐹𝐴2

+ (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

 max(𝐹𝐴1

+ , 𝐹𝐴2

+ )(𝑥) if 𝑥 ∈  V1 ∪ V2,

 

 (𝑇𝐵1

−   +  𝑇𝐵2

−   )(𝑥𝑦) =  {

𝑇𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  

𝑇𝐵2

− (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

min (𝑇𝐵1

− (𝑥𝑦), 𝑇𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪  𝐸2,

 

 (𝑇𝐵1

+   +  𝑇𝐵2

+   )(𝑥𝑦) =  {

𝑇𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  

𝑇𝐵2

+ (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

 min (𝑇𝐵1

+ (𝑥𝑦), 𝑇𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪  𝐸2,

 

 𝐼𝐵1

−   + 𝐼𝐵2

−   )(𝑥𝑦) =  {

𝐼𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  

𝐼𝐵2

− (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

 max(𝐼𝐵1

− (𝑥𝑦), 𝐼𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪ 𝐸2,

 

 (𝐼𝐵1

+   + 𝐼𝐵2

+   )(𝑥𝑦) =  {

𝐼𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  

𝐼𝐵2

+ (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

 max(𝐼𝐵1

+ (𝑥𝑦), 𝐼𝐵2

+ (𝑥𝑦) ) if xy ∈  E1  ∪  𝐸2,

 

 𝐹𝐵1

−   +  𝐹𝐵2

−   )(𝑥𝑦) =  {

𝐹𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  

𝐹𝐵2

− (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

 max(𝐹𝐵1

− (𝑥𝑦), 𝐹𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪  𝐸2,

 

 (𝐹𝐵1

+   +  𝐹𝐵2

+   )(𝑥𝑦) =  {

𝐹𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  

𝐹𝐵2

+ (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

 max(𝐹𝐵1

+ (𝑥𝑦), 𝐹𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪  𝐸2,

 

 (𝑇𝐵1

−  +  𝑇𝐵2

−  ) (𝑥 𝑦)  =  min (𝑇𝐵1

− (𝑥), 𝑇𝐵2

− (𝑥))   

 (𝑇𝐵1

+  +  𝑇𝐵2

+ ) (𝑥𝑦)  =  min (𝑇𝐵1

+ (𝑥), 𝑇𝐵2

+ (𝑥))  

 (𝐼𝐵1

−  + 𝐼𝐵2

−   ) (𝑥𝑦) = max (𝐼𝐵1

−  (𝑥), 𝐼𝐵2

−  (𝑥))  

 (𝐼𝐵1

+  + 𝐼𝐵2

+  ) (𝑥 𝑦)  =  max (𝐼𝐵1

+ (𝑥), 𝐼𝐵2

+ (𝑥)  

 (𝐹𝐵1

−  +  𝐹𝐵2

−  ) (𝑥𝑦) = max (𝐹𝐵1

− (𝑥), 𝐹𝐵2

− (𝑥))  

 (𝐹𝐵1

+  +  𝐹𝐵2

+ ) (𝑥 𝑦)  =  max (𝐹𝐵1

+ (𝑥), 𝐹𝐵1

+ (𝑥))𝑖𝑓𝑥𝑦 ∈  𝐸′ ,  

where 𝐸′is the set of all edges joining the nodes of 𝑉1 and 𝑉2, assuming 𝑉1  ∩  𝑉2 =
∅. 
 

Example 3.14.  

Let 𝐺1
∗  = (𝐴1, 𝐵1)and 𝐺2

∗ =  (𝐴2, 𝐵2) be two graphs where𝑉1  = {𝑢1, 𝑢2, 𝑢3,𝑢4}, 𝑉2  =
{𝑣1, 𝑣2, 𝑣3}. Consider two interval valued fermatean neutrosophic graphs (Figures 9, 
10 and 11):  

𝐴1 = {
〈𝑢1, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉, 〈𝑢2, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉,
〈𝑢3, [0.90,0.95], [0.85,0.95], [0.85,0.85]〉, 〈𝑢4, [0.90,0.95], [0.95,0.90], [0.80,0.85]〉 

},  

𝐵1

= {

〈𝑢1𝑢2, [0.85,0.90], [0.95,0.95], [0.95,0.95]〉, 〈𝑢2𝑢3, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉,
〈𝑢3𝑢4, [0.90,0.95], [0.95,0.95], [0.85,0.85]〉, 〈𝑢1𝑢4, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉,

〈𝑢1𝑢3, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉
}  ;  
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𝐴2 = {
〈𝑢1, [0.80,0.90], [0.85,0.95], [0.95,0.85]〉, 〈𝑢2, [0.95,0.90], [0.95,0.95], [0.80,0.85]〉,

〈𝑢3, [0.90,0.90], [0.95,0.95], [0.80,0.80]〉
}, 

 𝐵2 = {
〈𝑢1𝑢2, [0.80,0.90], [0.95,0.95], [0.95,0.85]〉 , 〈𝑢2𝑢3, [0.90,0.90], [0.95,0.95], [0.80,0.85]〉,

〈𝑢1𝑢3, [0.80,0.90], [0.95,0.95], [0.95,0.85]〉
}. 

 
 
     

 
 

Figure 9. Interval − valued Fermatean Neutrosophic Graph G1 
 
 

 
 Figure 10.  Interval − valued Fermatean Neutrosophic Graph G2 

     

 

 
  Figure 11. Union two Interval − valued Fermatean Neutrosophic Graphs 𝐺1  ∪  𝐺2 
 

{

〈𝑢1𝑢2, [0.80,0.90], [0.95,0.95], [0.95,0.95]〉, 〈𝑢2𝑢3, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉,
〈𝑢3𝑢4, [0.90,0.95], [0.95,0.95], [0.85,0.85]〉, 〈𝑢1𝑢4, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉,

〈𝑢1𝑢3, [0.80,0.90], [0.95,0.95], [0.95,0.95]〉
} 

 
Example 3.15 
Let 𝐺1

∗  = (𝐴1, 𝐵1)and 𝐺2
∗ =  (𝐴2, 𝐵2) be two graphs where 𝑉1  = {𝑥1, 𝑥2, 𝑥3}, 𝑉2  =

{𝑦1, 𝑦2, 𝑦3}. Consider two interval valued Fermatean neutrosophic graphs (Figures 12, 
13 and 14):  
 

𝐴1 = {
〈𝑥1, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉, 〈𝑥2, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉,

〈𝑥3, [0.90,0.95], [0.85,0.95], [0.85,0.85]〉 
},  

𝐵1 = {〈𝑥1𝑥2, [0.85,0.90], [0.95,0.95], [0.95,0.95]〉, 〈𝑥2𝑥3, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉 } 

𝐴2 = {
〈𝑦1, [0.85,0.85], [0.95,0.95], [0.90,0.90]〉, 〈𝑦2, [0.95,0.90], [0.90,0.95], [0.80,0.85]〉,

〈𝑦3, [0.95,0.95], [0.85,0.85], [0.85,0.85]〉 
},  
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𝐵2 = {〈𝑦1𝑦2, [0.85,0.85], [0.95,0.95], [0.90,0.90]〉, 〈𝑦2𝑦3, [0.95,0.90], [0.90,0.95], [0.85,0.85]〉} 
 
 

 

 
 

Figure 12. Interval − valued Fermatean Neutrosophic Graph G1 

 
 

 
 

Figure 13. Interval − valued Fermatean Neutrosophic Graph G2 

 
 

Figure 14.  Join of Interval − valued Fermatean Neutrosophic Graphs  𝐺1 + 𝐺2 
 

𝐸(𝐺1 + 𝐺2) : 
< 𝑥1𝑥2, [0.85,0.90], [0.95,0.95], [0.95,0.95] >, < 𝑥2𝑥3, [0.90,0.90], [0.95,0.95], [0.85,0.85] > 
< 𝑦1𝑦2, [0.85,0.85], [0.95,0.95], [0.90,0.90] >, < 𝑦2𝑦3, [0.95,0.90], [0.90,0.95], [0.85,0.85] >  
< 𝑥1𝑦1, [0.85,0.85], [0.95,0.95], [0.95,0.95] >, < 𝑥1𝑦2, [0.85,0.90], [0.95,0.95], [0.95,0.95] >,

< 𝑥1𝑦3, [0.85,0.95], [0.95,0.95], [0.95,0.95] > 
< 𝑥2𝑦1, [0.85,0.90], [0.95,0.95], [0.90,0.90] >, < 𝑥2𝑦2, [0.90,0.90], [0.95,0.95], [0.85,0.85] >,

< 𝑥2𝑦3, [0.90,0.90], [0.95,0.95], [0.85,0.85] > 
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< 𝑥3𝑦1, [0.85,0.85], [0.95,0.95], [0.90,0.90] >, < 𝑥3𝑦2, [0.90,0.90], [0.90,0.95], [0.85,0.85] >,
< 𝑥3𝑦3, [0.90,0.95], [0.85,0.95], [0.85,0.85] > 

 
 
Definition 3.16.  
 An interval valued Fermatean neutrosophic graph G = (A, B) is called complete if  

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) = min[𝑇𝐴

−(𝑣𝑖  ), 𝑇𝐴
−(𝑣𝑗  )] , 𝑇𝐵

+({𝑣𝑖  , 𝑣𝑗}) = min[𝑇𝐴
+(𝑣𝑖  ), 𝑇𝐴

+(𝑣𝑗  )]  

𝐼𝐵
−({𝑣𝑖  , 𝑣𝑗}) = max[𝐼𝐵

− (𝑣𝑖  ), 𝐼𝐵
−(𝑣𝑗 )] , 𝐼𝐵

+({𝑣𝑖  , 𝑣𝑗}) = max[𝐼𝐵
+(𝑣𝑖  ), 𝐼𝐵

+(𝑣𝑗  )]  

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗  }) = max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)],  𝐹𝐵

+({𝑣𝑖  , 𝑣𝑗 }) =  max[𝐹𝐵
+(𝑣𝑖), 𝐹𝐵

+(𝑣𝑗)] 

Definition 3.17.  
Let G = (A,B) be an interval-valued Fermatean neutrosophic graph where 𝐴 =

〈[𝑇𝐴
−, 𝑇𝐴

+], [𝐼𝐴
−, 𝐼𝐴

+], [𝐹𝐴
−, 𝐹𝐴

+]〉 is an interval-valued Fermatean neutrosophic set on V; 
and 𝐵 =  〈[𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+]〉 is an interval valued Fermatean  neutrosophic 

relation on 𝐸 satisfying 𝑉 =  { 𝑣1 , 𝑣2 , … , 𝑣𝑛 }, such that 𝑇𝐴
−  ∶ 𝑉 →  [0, 1], 𝑇𝐴

+  ∶ 𝑉 →
 [0, 1], 𝐼𝐴

−  ∶ 𝑉 →  [0, 1], 𝐼𝐴
+: 𝑉 → [0, 1] and 𝐹𝐴

−: 𝑉 → [0, 1], 𝐹𝐴
+: 𝑉 → [0, 1] denote the 

degree of truth-membership, the degree of indeterminacy-membership and falsity-
membership of the element 𝑦 ∈  𝑉, respectively. The positive degree of a vertex 𝑢 ∈
𝑉(𝐺) is 𝑇+(𝑢) = ∑ [𝑇𝐴

+]𝑢𝑣∈𝐸(𝐺)  ; 𝐼+(𝑢) = ∑ [𝐼𝐴
+]𝑢𝑣∈𝐸(𝐺) ; 𝐹+(𝑢) =

∑ [𝐹𝐴
+]𝑢𝑣∈𝐸(𝐺)   and 𝑑+(𝑢) = (𝑇𝐴

+, 𝐼𝐴
+, 𝐹𝐴

+). 𝑇−(𝑢) = ∑ [𝑇𝐴
−]𝑢𝑣∈𝐸(𝐺)  ; 𝐼−(𝑢) =

∑ [𝐼𝐴
−]𝑢𝑣∈𝐸(𝐺) ; 𝐹−(𝑢) = ∑ [𝐹𝐴

−]𝑢𝑣∈𝐸(𝐺)   and 𝑑−(𝑢) = (𝑇𝐴
−, 𝐼𝐴

−, 𝐹𝐴
−). The degree of a vertex 

𝑢 is 𝑑(𝑢) =  [𝑑+ (𝑢), 𝑑− (𝑢)]. 
If 𝑑+ (𝑢)  =  𝑘1 , 𝑑− (𝑢)  =  𝑘2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉, 𝑘1, 𝑘2 are two real numbers, then the 
graph is called [𝑘1 , 𝑘2] -regular interval valued Fermatean neutrosophic graph. 
 

Example 3.18. 
We consider an interval-valued Fermatean neutrosophic graph (Figure 15).           

 
                    Figure 15. Interval- valued Fermatean Neutrosophic Graph G 

 
𝑑(x1) = ([ 1.65,1.80,1.65], [1.85,1.90,1.70]); 
d(x2) = ([1.65,1.8,1.65], [1.8,1.9,1.7]);  d(x3) = ([1.7,1.8,1.7], [1.85,1.9,1.7]). 

4. Proposed IVFNG framework for MCDM problem  

The most of real life problems deal with uncertain domain. Recently, researchers 
(Sriganesh et al. 2021; Sundareswaran et al. 2022) have been studied the assessment 
of structural cracks in buildings using single-valued neutrosophic DEMATEL model 
and graph theoretical approach. The new concepts of IVFNG are employed to find the 
best materials that are used for making dental implants in the case of smokers. There 
are many researchers developed and studied different types uncertainty sets and their 
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application in Multi-Criteria Decision- Making (MCDM) (Duran et al., 2021; Ejegwa & 
Zuakwagh, 2022; Mohanta et al., 2020; Li et al., 2022; Smarandache, 2020; 
Smarandache, 2022; Wang et al., 2022; Zhang et al., 2022). Veezhinathan et al. (2022), 
made a comparative study of Dental Implant Materials Using Digraph Techniques 
(Figure 16).  Dental implants are the most popular option to replace missing teeth. 
They create direct contact with the bone which mimics the root of the tooth, upon 
which dental prosthesis can be fitted. These implants are designed in such a way that 
they can last for a long time without any failure. They get adhered to the bone without 
intervening in any connective tissue and this phenomenon is known as 
osseointegration. Titanium is considered the gold standard as it is the most commonly 
used dental implant material in use since the 1960s Zirconia is a non-metallic 
alternative to metal dental implants like 𝑇𝑖 𝑎𝑙𝑙𝑜𝑦 (𝑇𝑖 − 6𝐴𝑙 − 4𝑉) and 𝑇𝑖 alloys. 

 
Figure 16. Fishbone diagram with the various factors and subfactors 

 
In this section, the concept of Interval-valued Fermatean neutrosophic graph-

theoretic approach has been used to selection of material.  The condition of 
osseointegration in smokers is taken into consideration to compare the different 
material dental implants namely 𝑇𝑖 𝑎𝑙𝑙𝑜𝑦 (𝑇𝑖 − 6𝐴𝑙 − 4𝑉), 𝑇𝑖  alloy, and zirconia. The 
material to be chosen should exhibit certain properties to satisfy the purpose. While 
designing a dental implant, many factors come into consideration such as materials, 
dimensions, shape, etc. Material selection is the most important property for a dental 
implant to serve the required function. The material of the implant must be affordable 
and available. Following are the factors that are important for the selection of the 
material. 

Biocompatibility (B): A biocompatible material does not invoke an immune 
response and does not release any toxic substances. The major subfactors of 
biocompatibility are corrosion, inflammation, and allergy. 

Surface Properties (S): Surface properties refer to macroscopic and microscopic 
features of the implant surface and it plays a major role in determining the level of 
osseointegration between the implant and the bone. The major subfactors of surface 
properties are Surface Tension and Surface Energy, Surface Roughness, Porosity. 

Mechanical Properties(M): The implant biomaterial should possess a high degree 
of modulus of elasticity, to withstand the forces applied to the implant, thus preventing 
its deformation. It also ensures uniform stress distribution, thus reducing the implant 
movement concerning the bone. 

Cost (C): Dental implants in India range from 30,000-50,000 rupees. The price 
depends on many factors like the type of tooth implant, material, and design of the 
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implant, etc. Titanium is more expensive than stainless steel. The cost of titanium is 
slightly lower than zirconia. 

Titanium (𝑀1) and Titanium Alloys (𝑀2): Titanium is an excellent corrosion– 
resistant material due to the formation of 𝑇𝑖 𝑎𝑙𝑙𝑜𝑦 (𝑇𝑖 − 6𝐴𝑙 − 4𝑉)  when 𝑇𝑖 atoms 
react with water molecules and oxygen. They show excellent biocompatibility 
properties and support osseointegration. Titanium-based dental implants are strong 
and resist fracture. The cost of titanium is slightly lower than the zirconia. However, 
titanium implants are less aesthetically pleasing than zirconia and hence they are not 
preferable to use in the case of front teeth implant placement. Zirconia could be 
preferred in this case due to its ivory color. 

Zirconia (𝑀3): Zirconia is a non-metallic alternative to metal dental implants like 
Ti (Figure 17). An advantage of zirconia over titanium is its ivory color. Its low 
modulus of elasticity and thermal conductivity, low affinity to plaque, and high 
biocompatibility, in addition to its white color, have made zirconia ceramics a very 
attractive alternative to titanium. It is highly corrosion resistant and does not involve 
any release of ions hence no cytotoxicity. 
 
 
 
 

 
 
 
 

Figure 17. Types of Dental Implants 
In the process of applying IVFNG in identifying the best material. IVFNG can be 

represented as a matrix whose rows and columns are the sub-factors. 𝑉 =
{ 𝑀1, 𝑀2, 𝑀3} be the three different material under the selection on the basis of wishing 
param  eters or attributes set 𝐴 = {𝐵 , 𝑆} (Figure 18).  
 

 
 

 
Figure 18. IVFNG based on Biocompatibility & Surface Properties 

 
We construct the adjacency matrix for  𝑀(𝐵), 𝑀(𝑆)  listed below: 

 

𝑴(𝑩) =  (

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.95], [0.95,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

< [0.85,0.95], [0.95,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.85], [0.95,0.95], [0.85,0.95] >

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.85], [0.95,0.95], [0.85,0.95] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

) 
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𝑴(𝑺) =  (

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.95], [0.90,0.95], [0.85,0.85] > < [0.85,0.90], [0.95,0.95], [0.95,0.85] >

< [0.85,0.95], [0.90,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.90], [0.95,0.95], [0.95,0.85] >

< [0.85,0.90], [0.95,0.95], [0.95,0.85] > < [0.85,0.90], [0.95,0.95], [0.95,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

) 

 

We obtain the resultant interval valued Fermatean neutrosophic graph G by 
performing some operation (AND or OR). The incidence matrix of resultant interval 
Fermatean neutrosophic graph is 
 

𝑴(𝑩) =  (

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.95], [0.95,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

< [0.85,0.95], [0.95,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.85], [0.95,0.95], [0.95,0.95] >

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.85], [0.95,0.95], [0.95,0.95] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

) 

 
 

Sahin (2015) defined the average possible membership degree of element x to 
interval valued neutrosophic set  
𝐴 =  〈[𝑇𝐴

− (𝑥), 𝑇𝐴
+(𝑥)], [𝐼𝐴

− (𝑥), 𝐼𝐴
+(𝑥)], [𝐹𝐴

− (𝑥), 𝐹𝐴
+(𝑥)]〉 as follows: 

𝑆𝑘(𝑥) =
𝑇𝐴

− (𝑥) + 𝑇𝐴
+(𝑥) + 4 − 𝐼𝐴

− (𝑥) − 𝐼𝐴
+(𝑥) − 𝐹𝐴

− (𝑥) − 𝐹𝐴
+(𝑥) 

6
 

Based on 𝑆𝑘(𝑥), Table 2 depicted the score value of adjacency matrix of resultant 
interval valued Fermatean neutrosophic graph G with 𝑆𝑘   and choice value for both 
materials. 

Table 2.  Score value of adjacency matrix 

Materials 𝑴𝟏 𝑴𝟐 𝑴𝟑 Overall 

𝑴𝟏 0 0.383 0 0.383 

𝑴𝟐 0.383 0 0.317 0.7 

𝑴𝟑 0 0.317 0 0.317 

 
Further, it is noticed from Table 2, 𝑇𝑖 𝑎𝑙𝑙𝑜𝑦 (𝑇𝑖 − 6𝐴𝑙 − 4𝑉) has higher level of 

osseointegration in smokers followed by 𝑇𝑖 and zirconia. Therefore, we may claim that 
IVFNG is a new way to tackle the uncertainty in Fermatean Neutrosophic environment. 

5. Conclusion  

The concept of uncertainty plays a vital role in all science and engineering 
problems.  Especially, Fuzzy theory, Intuitionistic fuzzy theory and then Neutrosophic 
theory are the most valuable tools to find the optimum solution in mutli-criteria 
decision making problems. In this work, we include one more concept called interval-
valued Fermatean neutrosophic graphs in the list which has Pythagorean 
Neutrosophic, Single Valued Neutrosophic, Bipolar Neutrosophic graphs. We have 
discussed various types of Interval-valued Fermatean Neutrosophic graphs and the 
other types of these graphs in this paper. We also apply this new type of graph in a 
decision making problem. We are extending our research on this new concept to 
introduce Interval-valued Fermatean Neutrosophic number and Interval-valued 
Fermatean triangle and trapezoidal Neutrosophic number and its applications in our 
future work. 

Interval-valued Fermatean Neutrosophic graph has many advantages in MCDM 
problems such as mobile networking, supply chain management system, bio-medical 
applications, e-waste management and networking, etc. In future, one may determine 
the optimum alternatives in MCDM problems using IVFNG based score and accuracy 
functions.  
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