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Abstract: Fuzzy sets, rough sets and soft sets are different mathematical 
tools mainly developed to deal with uncertainty. The combination of these 
theories has a wide range of applications in decision analysis. In this paper, 
we defined a generalized Z-fuzzy soft 𝛽-covering-based rough matrices. Some 
algebraic properties are explored for this newly constructed matrix. The 
main aim of this paper is to propose a novel MAGDM model using generalized 
Z-fuzzy soft 𝛽-covering-based rough matrices. A MAGDM algorithm based on 
AHP method is created to recruit the best candidate for an assistant 
professor job in an institute and a numerical example is presented to 
demonstrate the created method. 

Keywords: 𝛽-level soft set, Fuzzy soft 𝛽-adhesion, Generalized Z-fuzzy soft 𝛽-
covering based rough matrix, AHP.  

1.  Introduction 

 Different theories have been proposed to deal with uncertainty in data mining 
when conventional mathematics fails. To handle problems containing uncertainty, 
many theories, such as probability, fuzzy sets, soft sets, rough sets, and a 
combination of these theories have been utilized. Each of these concepts appears to 
have its own set of constraints and limitations. Zadeh (1965) introduced fuzzy sets to 
handle uncertainties in datasets. Pawlak (1982) proposed the concept of a rough set 
(RS). Rough set is used in data analysis to discover basic patterns in data, eliminate 
redundancies, and develop decision rules. Sharma et al. (2018, 2021, 2022) 
developed various hybrid methods using rough set theory to create decision rules 
useful for real-world problems. Several scholars are working on this concept, which 
is being applied to a variety of fields such as in (Greco et al., 2001). Covering rough 
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sets (CRS) is an important study topic as an extension of rough sets. CRS is a useful 
tool that allows academics to examine uncertainty in a broader context. Because of 
its broad variety of applications, CRS has attracted a large number of researchers. 
Zhu and Wang (2007, 2012) proposed a variety of CRS models. Dubois and Prade 
(1990) have proposed two novel models such as fuzzy rough sets (FRS) and rough 
fuzzy sets (RFS). 

Molodtsov (1999) proposed a soft set theory to describe a useful mathematical 
tool to deal with multi-attribute uncertainty. Soft set theory describes a wide range 
of information and computational activities. Maji et al. (2002, 2003) developed a 
number of operations on soft sets. Bipolar soft sets are capable of dealing with 
ambiguity. Tufail et al. (2022) combined bipolar soft set with rough set and proposed 
a novel MCGDM algorithm. Ali (2011) examined the relationships between rough 
sets, fuzzy sets and soft sets. Cagman and Enginoglu (2010, 2012) presented soft 
matrix and fuzzy soft matrix and explored their algebraic properties. Vijayabalaji 
(2014) introduced the generalized matrix representation for soft rough matrices. 
Muthukumar and Krishnan (2018) presented a novel way of representing the fuzzy 
soft rough matrix in a generalized manner. Yüksel et al. (2014) proposed soft 
covering-based rough sets (SCRS) and developed an application that combined rough 
sets and covering soft sets. Zhan and Wang (2019) defined five forms of SCRS and 
described the relationship between SRS and SCRS. Soft rough fuzzy-covering (SRFC) 
and soft fuzzy rough covering (SFRC) models are presented by Zhan and Sun (2019). 
Zhang and Zhan (2019) contributed fuzzy soft 𝛽-coverings and defined four different 
fuzzy soft 𝛽-covering based fuzzy rough sets (FS𝛽CFRS). Yang (2022) proposed fuzzy 
covering based rough set over dual universe as an extension of single universe 
concept. 

A multiple attributes group decision-making (MAGDM) problem is one in which a 
group of qualified specialists examine and select the best alternative from a 
collection of objects based on their attributes. MAGDM is used in variety of fields. 
Research in MAGDM problems using fuzzy sets, rough sets and soft sets has 
increased in recent years (Gurmani et al., 2022). Due to the ambiguity in choice 
objects and decision-makers desire, it is not easy to explicit the decision maker’s idea 
in precise value. To efficiently deal with vagueness information, a generalized Z-fuzzy 
soft 𝛽-covering based rough matrix is introduced into the MAGDM problem. Saaty 
(1980) introduced Analytical Hierarchy Process (AHP), which is a well-known MCDM 
technique. In MCDM issues, AHP establishes a hierarchy of components and 
determines values for each of those elements via pairwise comparisons. AHP is a 
technique for guiding decision-making processes. The AHP framework assists firms 
in making various decisions by assessing and evaluating criteria. By following the 
phases of our proposed technique, we can make better-informed decisions.  

1.1. Motivation 

Vijayabalaji (2014) first introduced the idea of converting soft rough sets into soft 
rough matrices and they generalised the concept of soft rough matrices by redefining 
it. Muthukumar and Krishnan (2018) proposed the concept of generalized fuzzy soft 
rough matrices and developed a novel decision-making model using this technique. 
Inspired by these concepts, the idea of Generalized Z-fuzzy soft 𝛽-covering based 
rough (Z-GFS𝛽CR) matrices is presented and applied to decision-making problems 
using a 𝛽-level soft set. The purpose of this manuscript is to establish a foundation 
for Z-GFS𝛽CR matrices to handle uncertainty problems. We first proposed the 
theoretical concepts of Z-GFS𝛽CR matrices and their operations, which are more 



Pavithra and Manimaran/Decis. Mak. Appl. Manag. 6(1) (2023) 134-152 

136 

important for conducting theoretical studies in the extension of fuzzy soft rough set 
theory. 

The summary of the present paper is systematized as follows. In section 2, all the 
preliminaries needed to understand the following sections are provided. In section 3, 
we define a new type of Z-fuzzy soft 𝛽-covering based rough set (Z-FS𝛽CRS) using 
fuzzy soft 𝛽-adhesion formed from 𝛽-level soft set. We develop a matrix 
representation for Z-FS𝛽CRS. Further, we define a generalized matrix representation 
for Z-FS𝛽CRS known as generalized Z-fuzzy soft 𝛽-covering based rough (Z-GFS𝛽CR) 
matrix and we examine some algebraic properties of Z-GFS𝛽CR matrices. In section 
4, we create a decision making algorithm using Z-GFS𝛽CR matrices. In section 5, the 
conclusion is addressed. 

2. Preliminaries 

In this section, the preliminaries that are necessary to understand the below 
sections are described. Let 𝛺 be a finite universal set and 𝐵 ⊆ 𝐸 be the attribute set 
throughout this paper.  

 
Definition 1 (Molodtsov, 1999). A pair 𝐾 = (𝑁, 𝐵) be a soft set over 𝛺, if 𝑁 is a 

mapping defined by 𝑁:𝐵 → 𝑃(𝛺) where 𝑃(𝛺) denote the power set of 𝛺.  
 
Definition 2 (Feng et al., 2010). A soft set (𝑁, 𝐵) over 𝛺 is known as a full soft set, 

if ∪𝑏𝑗∈𝐵 𝑁(𝑏𝑗) = 𝛺.  

 
Definition 3 (Yüksel et al., 2014). A full soft set (𝑁, 𝐵) is known as a soft covering 

(SC), if 𝑁(𝑏𝑗) ≠ ∅, for each 𝑏𝑗 ∈ 𝐵, and it is denoted by �̃�𝐾 . Let (𝛺, �̃�𝐾) is known as soft 

covering approximation space (SCAS).  
 
Definition 4 (Zhan and Wang, 2019). Let 𝑆 = (𝛺, �̃�𝐾) be a SCAS. For each 𝑣𝑖 ∈ 𝛺, 

the soft adhesion of 𝑣𝑖  are defined as 𝑆𝐴(𝑣𝑖) = {𝑣𝑘 ∈ 𝛺: ∀  𝑏𝑗 ∈ 𝐵(𝑣𝑖 ∈ 𝑁(𝑏𝑗) ↔ 𝑣𝑘 ∈

𝑁(𝑏𝑗))}, where 𝑣𝑖 , 𝑣𝑘 ∈ 𝛺.  

 
Definition 5 (Zhan and Wang, 2019).  Let 𝑆 = (𝛺, �̃�𝐾) be a SCAS. For each 𝑀 ⊆ 𝛺, 

the soft covering lower approximation (SCLA) and soft covering upper 
approximation (SCUA) are respectively defined as 𝑆𝐶(𝑀) = {𝑣𝑖 ∈ 𝛺: 𝑆𝐴(𝑣𝑖) ⊆ 𝑀} 

and 𝑆𝐶(𝑀) = {𝑣𝑖 ∈ 𝛺: 𝑆𝐴(𝑣𝑖) ∩ 𝑀 ≠ ∅}. If 𝑆𝐶(𝑀) ≠ 𝑆𝐶(𝑀), then 𝑀 is known as Z-

soft covering based rough set. Moreover, the sets 

𝑃𝑜𝑠(𝑀) = 𝑆𝐶(𝑀), 𝑁𝑒𝑔(𝑀) = Ω − 𝑆𝐶(𝑀), and 𝐵𝑛𝑑(𝑀) = 𝑆𝐶(𝑀) − 𝑆𝐶(𝑀) are 

known as the Z-soft positive region, Z-soft negative region and Z- soft boundary 
region of 𝑀 respectively.  

 
Definition 6 (Zadeh, 1965). Let 𝐹(𝛺) indicates the family of all fuzzy subsets of 𝛺. 

Let 𝑁 is a mapping defined by 𝑁:𝐵 → 𝐹(𝛺), then the ordered pair (𝑁, 𝐵) is known as 
fuzzy soft set (FSS) over 𝛺.  
 

Definition 7 (Cagman and Enginoglu, 2012). Let (𝑛𝐵, 𝐸) be a FSS over 𝛺. Then, a 

subset of 𝛺 × 𝐸 is uniquely defined by 𝑅𝐵 = {(𝑣𝑖 , 𝑏𝑗): 𝑏𝑗 ∈ 𝐵, 𝑣𝑖 ∈ 𝑛𝐵(𝑏)} which is 

known as the relation form of (𝑛𝐵, 𝐸). The indicator function of 𝑅𝐵 is given by 
𝜒𝑅𝐵: 𝛺 × 𝐸 → [0,1], 𝜒𝑅𝐵(𝑣𝑖 , 𝑏𝑗) = 𝜇(𝑣𝑖 , 𝑏𝑗), where 𝜇(𝑣𝑖 , 𝑏𝑗) is the membership value of 
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𝑣𝑖  with respect to 𝑏𝑗 . If 𝛺 = {𝑣1, 𝑣2, . . . , 𝑣𝑝} and 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑞}, then 𝑅𝐵 can be 

written in the table form as below,  
 

𝑅𝐵 𝑏1 𝑏2 ⋯ 𝑏𝑞 

𝑣1 𝜒𝑅𝐵(𝑣1, 𝑏1) 𝜒𝑅𝐵(𝑣1, 𝑏2) ⋯ 𝜒𝑅𝐵(𝑣1, 𝑏𝑞) 

𝑣2 𝜒𝑅𝐵(𝑣2, 𝑏1) 𝜒𝑅𝐵(𝑣2, 𝑏2) ⋯ 𝜒𝑅𝐵(𝑣2, 𝑏𝑞) 

⋮ ⋯ ⋯ ⋱ ⋯ 
𝑣𝑝 𝜒𝑅𝐵(𝑣𝑝, 𝑏1) 𝜒𝑅𝐵(𝑣𝑝, 𝑏2) ⋯ 𝜒𝑅𝐵(𝑣𝑝 , 𝑏𝑞) 

  

If 𝑚𝑖𝑗 = 𝜒𝑅𝐵(𝑣𝑖 , 𝑏𝑗), we define a matrix [𝑚𝑖𝑗]𝑝×𝑞 = (

𝑚11 … 𝑚1𝑞
⋮ ⋱ ⋮
𝑚𝑝1 … 𝑚𝑝𝑞

), which is 

known as fuzzy soft matrix of (𝑛𝐵, 𝐸) of order 𝑝 × 𝑞 over Ω.  
 
Definition 8 (Zhang et al., 2004). If (⋃𝑏𝑗∈𝐵 𝑁(𝑏𝑗))(𝑣𝑖) = 1, for all 𝑣𝑖 ∈ 𝛺, then 

(𝑁, 𝐵) is known as fuzzy soft covering over 𝛺. Then (𝛺, 𝐶𝐾) is known as fuzzy soft 
covering approximation space (FSCAS).  

 
Definition 9 (Zhang and Zhan, 2019). Let (𝛺, 𝐶𝐾) be a FSCAS. If 

(⋃𝑏𝑗∈𝐵 𝑁(𝑏𝑗))(𝑣𝑖) ≥ 𝛽, for all 𝑣𝑖 ∈ 𝛺, then 𝔖 = (𝑁, 𝐵) is known as fuzzy soft 𝛽-

covering set (FS𝛽CS) over 𝛺. Then (𝛺, 𝐶𝐾) is known as fuzzy soft 𝛽-covering 
approximation space (FS𝛽CAS).  

3. Generalized Z-fuzzy soft 𝜷-covering based rough matrices 

In this section, we propose a Z-fuzzy soft 𝛽-covering based rough set with respect 
to 𝛽-level soft set and a new type of matrix is introduced by using Z-fuzzy soft 𝛽-
covering based rough set namely, Z-fuzzy soft 𝛽-covering based rough (Z-FS𝛽CR) 
matrix. As a generalization of this concept, generalized Z-fuzzy soft 𝛽-covering based 
rough (Z-GFS𝛽CR) matrix is proposed. 

 
Definition 10. Let 𝔖 = (𝑁, 𝐵) be a FS𝛽CS over 𝛺. Let 𝛽 ∈ (0,1]. The 𝛽-level soft set 

of (𝑁, 𝐵) is a crisp soft set defined by 𝐿((𝑁, 𝐵), 𝛽) =  

𝑁𝛽(𝑏𝑗)(𝑣𝑖) = {
1,  if  𝑁(𝑏𝑗)(𝑣𝑖)   ≥   𝛽 ;

0,  if  𝑁(𝑏𝑗)(𝑣𝑖)   <   𝛽 .
 

, where 𝑖 = 1, . . . , 𝑝 and 𝑗 = 1, . . . , 𝑞.  
 

Definition 11. Let (𝛺, 𝐶𝐾) be a FS𝛽CAS. For each 𝑣𝑖 ∈ 𝛺, the fuzzy soft 𝛽-adhesion 

of 𝑣𝑖  are defined as 𝑆𝐴𝛽(𝑣𝑖) = {𝑣𝑘 ∈ 𝛺: ∀  𝑏𝑗 ∈ 𝐵(𝑣𝑖 ∈ 𝑁𝛽(𝑏𝑗) ↔ 𝑣𝑘 ∈ 𝑁𝛽(𝑏𝑗))}.  

 
Definition 12. Let 𝔖 = (𝑁, 𝐵) be a FS𝛽CS over 𝛺 and 𝐿 be a 𝛽-level soft set of 𝔖. 

Then 𝒥 = (𝛺, 𝐿) is known as fuzzy soft 𝛽-covering approximation space (FS𝛽CAS) 
with respect to 𝛽-level soft set of 𝔖. For all 𝑀 ⊆ 𝛺, the fuzzy soft 𝛽-covering lower 
approximation (FS𝛽CLA) and fuzzy soft 𝛽-covering upper approximation (FS𝛽CUA) 

are defined as, 𝐹𝑆(𝑀) = {𝑣𝑖 ∈ 𝛺: 𝑆𝐴𝛽(𝑣𝑖) ⊆ 𝑀} and 𝐹𝑆(𝑀) = {𝑣𝑖 ∈ 𝛺: 𝑆𝐴𝛽(𝑣𝑖) ∩ 𝑀 ≠

∅} respectively . If 𝐹𝑆(𝑀) ≠ 𝐹𝑆(𝑀), then 𝑀 is called Z-fuzzy soft 𝛽-covering based 

rough set (Z-FS𝛽CRS). Moreover, the sets 𝑃𝑜𝑠(𝑀) = 𝐹𝑆(𝑀), 𝑁𝑒𝑔(𝑀) = 𝛺 − 𝐹𝑆(𝑀) 
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and 𝐵𝑛𝑑(𝑀) = 𝐹𝑆(𝑀) − 𝐹𝑆(𝑀) are known as the Z-fuzzy soft 𝛽-positive region, Z-

fuzzy soft 𝛽-negative region and Z-fuzzy soft 𝛽-boundary region of 𝑀 respectively.  
 

Lemma 1. If 𝑀 = ∅, then 𝐹𝑆(𝑀) = ∅, 𝐹𝑆(𝑀) = ∅, 𝑃𝑜𝑠(𝑀) = ∅, 𝑁𝑒𝑔(𝑀) = 𝛺 and 

𝐵𝑛𝑑(𝑀) = ∅. If 𝑀 = Ω, then 𝐹𝑆(𝑀) = Ω, 𝐹𝑆(𝑀) = Ω, 𝑃𝑜𝑠(𝑀) = Ω, 𝑁𝑒𝑔(𝑀) = ∅ and 

𝐵𝑛𝑑(𝑀) = ∅.  
 
The following example proves that if 𝑀 ⊆ 𝑂, then Pos(M) ⊂ Pos(O), Neg(M) ⊃ 

Neg(O) but Bnd(M) need not to be a subset of Bnd(O). 
 
Example 1. A university is conducting an interview for an assistant professor job. 

The candidates who have applied for the interview form a set 𝛺 =
{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and the attribute set includes their important features such as 
communication skills (𝑏1), teaching skills (𝑏2), academic records (𝑏3) and experience 
(𝑏4). Let (𝑁, 𝐵) be the FS𝛽CS over 𝛺 in Table 1. Let 𝑁(𝑏1) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6}, 
𝑁(𝑏2) = {𝑣2, 𝑣6}, 𝑁(𝑏3) = {𝑣1, 𝑣3, 𝑣4, 𝑣5}, 𝑁(𝑏4) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and 𝑁(𝑏5) =
{𝑣5}. Then the fuzzy soft 𝛽-adhesion are 𝑆𝐴𝛽(𝑣1) = {𝑣1, 𝑣3, 𝑣4}, 𝑆𝐴𝛽(𝑣2) = {𝑣2, 𝑣6}, 

𝑆𝐴𝛽(𝑣3) = {𝑣1, 𝑣3, 𝑣4}, 𝑆𝐴𝛽(𝑣4) = {𝑣1, 𝑣3, 𝑣4}, 𝑆𝐴𝛽(𝑣5) = {𝑣5} and 𝑆𝐴𝛽(𝑣6) = {𝑣2, 𝑣6}. 

Let 𝑀 = {𝑣2, 𝑣5}, 𝑂 = {𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and 𝑃 = {𝑣1, 𝑣2, 𝑣4, 𝑣6} are the subsets of 𝛺. 

For 𝑀, 𝐹𝑆(𝑀) = {𝑣5}, 𝐹𝑆(𝑀) = {𝑣2, 𝑣5, 𝑣6}, 𝑃𝑜𝑠(𝑀) = {𝑣5}, 𝑁𝑒𝑔(𝑀) = {𝑣1, 𝑣3, 𝑣4} 

and 𝐵𝑛𝑑(𝑀) = {𝑣2, 𝑣6}. 

For 𝑂, 𝐹𝑆(𝑂) = {𝑣2, 𝑣5, 𝑣6}, 𝐹𝑆(𝑂) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, 𝑃𝑜𝑠(𝑂) = {𝑣2, 𝑣5, 𝑣6}, 

𝑁𝑒𝑔(𝑂) = ∅ and 𝐵𝑛𝑑(𝑂) = {𝑣1, 𝑣3, 𝑣4}. 

For 𝑃, 𝐹𝑆(𝑃) = {𝑣2, 𝑣6}, 𝐹𝑆(𝑃) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6}, 𝑃𝑜𝑠(𝑃) = {𝑣2, 𝑣6}, 𝑁𝑒𝑔(𝑃) =
{𝑣5} and 𝐵𝑛𝑑(𝑃) = {𝑣1, 𝑣3, 𝑣4}. 

Here, 𝑀 ⊆ 𝑂 but 𝐵𝑛𝑑(𝑀) ⊈ 𝐵𝑛𝑑(𝑂).  
  

Theorem 1.  Let (𝛺, 𝐿) be a fuzzy soft 𝛽-covering approximation space and 𝑀,𝑂 ⊆
𝛺. Then the fuzzy soft 𝛽-covering lower approximation and fuzzy soft 𝛽-covering 
upper approximations satisfies the following properties: 

1) 𝐹𝑆(𝑀) ⊆ 𝑀 ⊆ 𝐹𝑆(𝑀). 

2) 𝐹𝑆(∅) = ∅ = 𝐹𝑆(∅). 

3) 𝐹𝑆(Ω) = Ω = 𝐹𝑆(Ω). 

4) 𝐹𝑆(𝑀 ∪ 𝑂) = 𝐹𝑆(𝑀) ∪ 𝐹𝑆(𝑂). 
5) 𝐹𝑆(𝑀 ∩ 𝑂) = 𝐹𝑆(𝑀) ∩ 𝐹𝑆(𝑂). 

6) If 𝑀 ⊆ 𝑂, then 𝐹𝑆(𝑀) ⊆ 𝐹𝑆(𝑂). 

7) If 𝑀 ⊆ 𝑂, then 𝐹𝑆(𝑀) ⊆ 𝐹𝑆(𝑂). 

8) 𝐹𝑆(−𝑀) = −𝐹𝑆(𝑀). 

9) 𝐹𝑆(−𝑀) = −𝐹𝑆(𝑀). 

10) 𝐹𝑆(𝐹𝑆(𝑀)) = 𝐹𝑆(𝑀). 

11) 𝐹𝑆(𝐹𝑆(𝑀)) = 𝐹𝑆(𝑀).  

 
Proof. 

1) If 𝑣𝑖  ∈ 𝐹𝑆(𝑀) then 𝑆𝐴(𝑣𝑖) ⊆ 𝑀 since 𝑣𝑖  ∈ 𝑆𝐴(𝑣𝑖) hence 𝑣𝑖  ∈ 𝑀 and 𝐹𝑆(𝑀) 

⊆ 𝑀. If 𝑣𝑖  ∈ 𝑀 then 𝑆𝐴(𝑣𝑖) ∩ 𝑀 ≠ ∅, since 𝑣𝑖  ∈ 𝑆𝐴(𝑣𝑖) ∩ 𝑀. Hence 𝑣𝑖  ∈ 

𝐹𝑆(𝑀) and 𝑀 ⊆ 𝐹𝑆(𝑀).  
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2) From 1), 𝐹𝑆(∅) ⊆ ∅ and ∅ ⊆ 𝐹𝑆(∅), thus 𝐹𝑆(∅) = ∅. Consider 𝐹𝑆(∅) ≠ ∅. 

Then there exist 𝑣𝑖  such that 𝑣𝑖  ∈ 𝐹𝑆(∅). Hence 𝑆𝐴(𝑣𝑖) ∩ ∅ ≠ ∅, but 

𝑆𝐴(𝑣𝑖) ∩ ∅ = ∅. This  contradicts our assumption. Thus, 𝐹𝑆(∅) = ∅.  
 

3) From 1), 𝐹𝑆(Ω) ⊆ Ω. Now we have to prove that Ω ⊆ 𝐹𝑆(Ω). If 𝑣𝑖  ∈ Ω then 

𝑆𝐴(𝑣𝑖)  ⊆ Ω. Hence 𝑣𝑖  ∈ 𝐹𝑆(Ω), thus 𝐹𝑆(Ω) = Ω. From 1), Ω ⊆ 𝐹𝑆(Ω) and 

𝐹𝑆(Ω) ⊆ Ω, thus  𝐹𝑆(Ω) = Ω. 
 

4) 𝑣𝑖 ∈ 𝐹𝑆(𝑀 ∪ 𝑂) iff 𝑆𝐴(𝑣𝑖) ∩ (𝑀 ∪ 𝑂) ≠ ∅ iff 𝑆𝐴(𝑣𝑖) ∩ 𝑀 ∪ 𝑆𝐴(𝑣𝑖) ∩ 𝑂 ≠

∅ iff 𝑆𝐴(𝑣𝑖) ∩ 𝑀 ≠ ∅ and 𝑆𝐴(𝑣𝑖) ∩ 𝑀 ≠ ∅ iff 𝑣𝑖 ∈ 𝐹𝑆(𝑀) and 𝑣𝑖 ∈ 𝐹𝑆(𝑂) 

iff 𝑣𝑖 ∈ 𝐹𝑆(𝑀) ∪ 𝐹𝑆(𝑂). Thus, 𝐹𝑆(𝑀 ∪ 𝑂) = 𝐹𝑆(𝑀) ∪ 𝐹𝑆(𝑂). 
 

5) 𝑣𝑖 ∈ 𝐹𝑆(𝑀 ∩ 𝑂) iff 𝑆𝐴(𝑣𝑖) ⊆ 𝑀 ∩ 𝑂 iff 𝑆𝐴(𝑣𝑖) ⊆ 𝑀 or 𝑆𝐴(𝑣𝑖) ⊆ 𝑂 iff 𝑣𝑖 ∈

𝐹𝑆(𝑀) ∩ 𝐹𝑆(𝑂). 

 
6) Let 𝑣𝑖 ∈ 𝐹𝑆(𝑀), by Definition 12, 𝑆𝐴(𝑣𝑖) ⊆ 𝑀 this implies 𝑆𝐴(𝑣𝑖) ⊆ 𝑀 ⊂

𝑂. Hence 𝑣𝑖 ∈ 𝑆𝐴(𝑣𝑖) ⊆ 𝑂 implies 𝑣𝑖 ∈ 𝐹𝑆(𝑂). Thus, 𝐹𝑆(𝑀) ⊆ 𝐹𝑆(𝑂). 

 

7) Since 𝑀 ⊆ 𝑂 iff 𝑀 ∪ 𝑂, hence 𝐹𝑆(𝑀 ∪ 𝑂) = 𝐹𝑆(𝑂) and by using 4) we get 

𝐹𝑆(𝑀) ∪ 𝐹𝑆(𝑂) = 𝐹𝑆(𝑂). Hence 𝐹𝑆(𝑀) ⊆ 𝐹𝑆(𝑂).  
 

8) If 𝑣𝑖 ∈ 𝐹𝑆(𝑀) then 𝑆𝐴(𝑣𝑖) ⊆ 𝑀 iff 𝑆𝐴(𝑣𝑖) ∩ −𝑀 = ∅ iff 𝑆𝐴(𝑣𝑖) ∉ 𝐹𝑆(−𝑀) 

iff 𝑣𝑖 ∈ −𝐹𝑆(−𝑀). Hence 𝐹𝑆(𝑀) = −𝐹𝑆(−𝑀). 

 

9) By replacing 𝑀 by −𝑀 in the proof of 10), we get 𝐹𝑆(−𝑀) = −𝐹𝑆(𝑀). 

 
10) From 1), 𝐹𝑆(𝐹𝑆(𝑀)) ⊆ 𝐹𝑆(𝑀). Now we have to prove that 𝐹𝑆(𝑀) ⊆

𝐹𝑆(𝐹𝑆(𝑀)). If 𝑣𝑖 ∈ 𝐹𝑆(𝑀) then 𝑆𝐴(𝑣𝑖) ⊆ 𝑀, hence 𝐹𝑆(𝑆𝐴(𝑣𝑖)) ⊆ 𝐹𝑆(𝑀) 

but 𝐹𝑆(𝑆𝐴(𝑣𝑖)) = 𝑆𝐴(𝑣𝑖), thus 𝑆𝐴(𝑣𝑖) ⊆ 𝐹𝑆(𝑀) and 𝑣𝑖 ∈ 𝐹𝑆(𝐹𝑆(𝑀)). 

Hence 𝐹𝑆(𝑀) ⊆ 𝐹𝑆(𝐹𝑆(𝑀)).  

 

11) From 1), 𝐹𝑆(𝑀) ⊆ 𝐹𝑆(𝐹𝑆(𝑀)). Now we have to prove 𝐹𝑆(𝐹𝑆(𝑀)) ⊆

𝐹𝑆(𝑀). If 𝑣𝑖 ∈ 𝐹𝑆(𝐹𝑆(𝑀)), then 𝑆𝐴(𝑣𝑖) ∩ 𝐹𝑆(𝑀) ≠ ∅, but 𝑆𝐴(𝑣𝑖) =
𝑆𝐴(𝑣𝑘), thus 𝑆𝐴(𝑣𝑖) ∩ 𝑀 ≠ ∅.  

The above theorem shows that the fuzzy soft 𝛽-covering lower and upper 
approximations satisfy the Pawlak’s rough lower and upper approximations 
properties. Hence, the Z-fuzzy soft 𝛽-covering based rough set is significant. 

 
Definition 13. Let 𝑀 ⊆ 𝛺 be a Z-FS𝛽CRS with Z-fuzzy soft 𝛽-positive region, Z-

fuzzy soft 𝛽-negative region and Z-fuzzy soft 𝛽-boundary region. Define a function 
𝐼𝐹𝑆𝛽𝐶𝑅: 𝛺 → {0,0.5,1} such that  

𝐼𝐹𝑆𝛽𝐶𝑅(𝑣𝑖) = {

1,  if  𝑣𝑖   ∈   𝑃𝑜𝑠(𝑀) ;
0,  if  𝑣𝑖   ∈   𝑁𝑒𝑔(𝑀) ;

0.5,  if  𝑣𝑖   ∈   𝐵𝑛𝑑(𝑀) .
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The matrix formed by 𝐼𝐹𝑆𝛽𝐶𝑅  is defined as [𝑚𝑖𝑗]𝑝×𝑞 = (

𝑚11 … 𝑚1𝑞
⋮ ⋱ ⋮
𝑚𝑝1 … 𝑚𝑝𝑞

), where 

𝑚𝑖𝑗 ∈ {0,0.5,1} and it is known as Z-fuzzy soft 𝛽-covering based rough (Z-FS𝛽CR) 

matrix over Ω of order 𝑝 × 𝑞. The family of all Z-FS𝛽CR matrices over Ω of order 
𝑝 × 𝑞 are denoted by Z-FS𝛽CR 𝑝×𝑞 .  

 
Definition 14. Let 𝑀 ⊆ 𝛺 be a Z-FS𝛽CRS with the Z-fuzzy soft 𝛽-positive, Z-fuzzy 

soft 𝛽-negative and Z fuzzy soft 𝛽-boundary regions. Define a function 𝐼𝐺𝐹𝑆𝛽𝐶𝑅: 𝛺 →

[0,1] such that  

𝐼𝐺𝐹𝑆𝛽𝐶𝑅(𝑣𝑖) = {

1,  if  𝑣𝑖   ∈   𝑃𝑜𝑠(𝑀) ;
0,  if  𝑣𝑖   ∈   𝑁𝑒𝑔(𝑀) ;

𝑎,  if  𝑣𝑖   ∈   𝐵𝑛𝑑(𝑀), 𝑎  ∈   (0,1) .
 

The matrix formed from 𝐼𝐺𝐹𝑆𝛽𝐶𝑅  is defined as [𝑚𝑖𝑗]𝑝×𝑞 = (

𝑚11 … 𝑚1𝑞
⋮ ⋱ ⋮
𝑚𝑝1 … 𝑚𝑝𝑞

), 

where 𝑚𝑖𝑗  ∈ [0,1], and it is known as generalized Z-fuzzy soft 𝛽-covering based 

rough (Z-GFS𝛽CR) matrix over Ω of order 𝑝 × 𝑞. The family of all Z-GFS𝛽CR matrices 
over Ω of order 𝑝 × 𝑞 are denoted by Z-GFS𝛽CR 𝑝×𝑞 . 

 
Example 2. (Continued from Example 1) Let (𝑁, 𝐵) be the FS𝛽CS over 𝛺 in Table 1. 

Let 𝛽 = 0.5. Thus, the 𝛽-level soft set of (𝑁, 𝐵) is shown in Table 2. The ordered pair 𝒥 
= (𝛺, 𝐿) be the FS𝛽CAS. Then the fuzzy soft 𝛽-adhesion with respect to 𝛽-level soft 
set are 𝑆𝐴𝛽(𝑣1) = {𝑣1, 𝑣4}, 𝑆𝐴𝛽(𝑣2) = {𝑣2, 𝑣5}, 𝑆𝐴𝛽(𝑣3) = {𝑣3}, 𝑆𝐴𝛽(𝑣4) = {𝑣1, 𝑣4}, 

𝑆𝐴𝛽(𝑣5) = {𝑣2, 𝑣5} and 𝑆𝐴𝛽(𝑣6) = {𝑣6}. For 𝑀 = {𝑣1, 𝑣3, 𝑣5} ⊆ 𝛺, then we get 

𝐹𝑆(𝑀) = {𝑣3}, 𝐹𝑆(𝑀) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, 𝑃𝑜𝑠(𝑀) = {𝑣3}, 𝑁𝑒𝑔(𝑀) = {𝑣6} and 

𝐵𝑛𝑑(𝑀) = {𝑣1, 𝑣2, 𝑣4, 𝑣5}. Here 𝐹𝑆(𝑀) ≠ 𝐹𝑆(𝑀), thus 𝑀 is known as Z-fuzzy soft 𝛽-

covering based rough set. The Z-GFS𝛽CR matrix of order 6 × 4 is given by 

[𝑚𝑖𝑗]6×4 =

(

 
 
 
 

𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎
1 1 1 1
𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎
0 0 0 0

)

 
 
 
 

 , where 𝑎 ∈ (0,1). 

 
Table 1. Tabular representation for (N, B)    

 𝑏1 𝑏2 𝑏3 𝑏4 
𝑣1 0.4 0.5 0.6 0.7 
𝑣2 0.3 0.2 0.8 0.7 
𝑣3 0.5 0.1 0.6 0.4 
𝑣4 0.4 0.5 0.7 0.6 
𝑣5 0.4 0.3 0.7 0.6 
𝑣6 0.7 0.8 0.3 0.2 
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  Table 2. Tabular representation of 𝛽-level soft set L((N, B), 0.5) 

 𝑏1 𝑏2 𝑏3 𝑏4 
𝑣1 0 1 1 1 
𝑣2 0 0 1 1 
𝑣3 1 0 1 0 
𝑣4 0 1 1 1 
𝑣5 0 0 1 1 
𝑣6 1 1 0 0 

  
 Definition 15. Let [𝑚𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . If there is only one element in the 

attribute set, then [𝑚𝑖𝑗] is known as Z-fuzzy soft 𝛽-covering based row matrix and 

denoted by [𝑚𝑖1].  
 
Definition 16. Let [𝑚𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . If there is only one element in the 

universal set, then [𝑚𝑖𝑗] is known as Z-fuzzy soft 𝛽-covering based column matrix 

and denoted by [𝑚1𝑗].  

 
Definition 17. Let [𝑚𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . For each 𝑖 and 𝑗, if 𝑚𝑖𝑗 = 0, for all 𝑣𝑖 ∈

𝑃𝑜𝑠(𝑀) then [𝑚𝑖𝑗] is known as Zero Z-fuzzy soft 𝛽-covering based rough matrix and 

denoted by [0].  
 
Definition 18. Let [𝑚𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . For each 𝑖 and 𝑗, if 𝑚𝑖𝑗 = 1, for all 𝑣𝑖 ∈

𝑁𝑒𝑔(𝑀) then [𝑚𝑖𝑗] is known as Universal Z-fuzzy soft 𝛽-covering based rough matrix 

and denoted by [1].  
 
Definition 19. Let [𝑚𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . For each 𝑖 and 𝑗, if 𝑚𝑖𝑗 = 𝑎, for all 𝑣𝑖 ∈

𝐵𝑛𝑑(𝑀), 𝑎 ∈ (0,1) then [𝑚𝑖𝑗] is known as Universal generalized Z-fuzzy soft 𝛽-

covering based rough matrix and denoted by [𝑎].  
 
Definition 20. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . If 𝑚𝑖𝑗 ≤ 𝑛𝑖𝑗  for each 𝑖 and 𝑗 then 

[𝑚𝑖𝑗] is a Z-fuzzy soft 𝛽-covering based rough sub matrix of [𝑛𝑖𝑗] and denoted by 

[𝑚𝑖𝑗] ⊆̃ [𝑛𝑖𝑗].  

 
Definition 21. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . If 𝑚𝑖𝑗 ≤ 𝑛𝑖𝑗  for at least one element 

𝑚𝑖𝑗 < 𝑛𝑖𝑗  for each 𝑖 and 𝑗 then [𝑚𝑖𝑗] is a proper Z-fuzzy soft 𝛽-covering based rough 

sub matrix of [𝑛𝑖𝑗] and denoted by [𝑚𝑖𝑗] ⊂̃ [𝑛𝑖𝑗].  

 
Definition 22. If 𝑚𝑖𝑗 = 𝑛𝑖𝑗  for each 𝑖 and 𝑗 then [𝑚𝑖𝑗] and [𝑛𝑖𝑗] are called Z-fuzzy 

soft 𝛽-covering based rough equal matrices and denoted by [𝑚𝑖𝑗] = [𝑛𝑖𝑗].  

 
Definition 23. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . The union of [𝑚𝑖𝑗] and [𝑛𝑖𝑗] is 

denoted by [𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗], defined as [𝑘𝑖𝑗] where 𝑘𝑖𝑗 = 𝑚𝑎𝑥{𝑚𝑖𝑗 , 𝑛𝑖𝑗}, for each 𝑖 and 𝑗.  

 
Definition 24. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . The intersection of [𝑚𝑖𝑗] and [𝑛𝑖𝑗] is 

denoted by [𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗], defined as [𝑘𝑖𝑗] where 𝑘𝑖𝑗 = 𝑚𝑖𝑛{𝑚𝑖𝑗 , 𝑛𝑖𝑗}, for each 𝑖 and 𝑗.  

 
Definition 25. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . The complement of [𝑚𝑖𝑗] is denoted 

by [𝑚𝑖𝑗]
𝑐  defined as [𝑘𝑖𝑗] where 𝑘𝑖𝑗 = 1 − 𝑚𝑖𝑗  for each 𝑖 and 𝑗.  
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Definition 26. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . The matrices [𝑚𝑖𝑗] and [𝑛𝑖𝑗] are 

disjoint if [𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗] = [0] for each 𝑖 and 𝑗.  

 
Proposition 1. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, 

1) [[𝑚𝑖𝑗]
𝑐]𝑐 = [𝑚𝑖𝑗]. 

2) [0]𝑐 = [1]. 
Proof.  
The proof is obvious from Definition 25.  
  
Proposition 2. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗], [𝑘𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, 

1) [𝑚𝑖𝑗] ⊆̃ [1]. 

2) [0] ⊆̃ [𝑚𝑖𝑗]. 

3) [𝑚𝑖𝑗] ⊆̃ [𝑚𝑖𝑗]. 

4) [𝑚𝑖𝑗] ⊆̃ [𝑛𝑖𝑗] and [𝑛𝑖𝑗] ⊆̃ [𝑘𝑖𝑗] implies [𝑚𝑖𝑗] ⊆̃ [𝑘𝑖𝑗]. 

5) [𝑚𝑖𝑗] ⊆̃ [𝑛𝑖𝑗] and [𝑛𝑖𝑗] ⊆̃ [𝑚𝑖𝑗] if and only if [𝑚𝑖𝑗] = [𝑛𝑖𝑗]. 

6) [𝑚𝑖𝑗] = [𝑛𝑖𝑗] and [𝑛𝑖𝑗] = [𝑘𝑖𝑗] if and only if [𝑚𝑖𝑗] = [𝑘𝑖𝑗]. 

Proof.  
The proof is obvious from Definitions 20 and 22.  
  
Proposition 3. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗], [𝑘𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, 

1) [𝑚𝑖𝑗] ∪̃ [𝑚𝑖𝑗] = [𝑚𝑖𝑗]. 

2) [𝑚𝑖𝑗] ∪̃ [0] = [𝑚𝑖𝑗]. 

3) [𝑚𝑖𝑗] ∪̃ [1] = [1]. 

4) [𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗] = [𝑛𝑖𝑗] ∪̃ [𝑚𝑖𝑗]. 

5) [𝑚𝑖𝑗] ∪̃ ([𝑛𝑖𝑗] ∪̃ [𝑘𝑖𝑗]) = ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗]) ∪̃ [𝑘𝑖𝑗].  

 
Proof. 
The proof is obvious from Definition 23.  

  
Proposition 4. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗], [𝑘𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, 

1) [𝑚𝑖𝑗] ∩̃ [𝑚𝑖𝑗] = [𝑚𝑖𝑗]. 

2) [𝑚𝑖𝑗] ∩̃ [0] = [0]. 

3) [𝑚𝑖𝑗] ∩̃ [1] = [𝑚𝑖𝑗]. 

4) [𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗] = [𝑛𝑖𝑗] ∩̃ [𝑚𝑖𝑗]. 

5) [𝑚𝑖𝑗] ∩̃ ([𝑛𝑖𝑗] ∩̃ [𝑘𝑖𝑗]) = ([𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗]) ∩̃ [𝑘𝑖𝑗].  

Proof. 
 The proof is obvious from Definition 24.  
  
Proposition 5. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, De Morgan’s inclusions are 

true. 

1) ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗])
𝑐
⊆̃ [𝑚𝑖𝑗]

𝑐 ∩̃ [𝑛𝑖𝑗]
𝑐. 

2) ([𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗])
𝑐
⊆̃ [𝑚𝑖𝑗]

𝑐 ∪̃ [𝑛𝑖𝑗]
𝑐.  

Proof. 
 The proof is obvious from Definitions 20, 23 and 24.  
  
Proposition 6. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, De Morgan’s laws are true. 
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1) ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗])
𝑐
= [𝑚𝑖𝑗]

𝑐 ∩̃ [𝑛𝑖𝑗]
𝑐. 

2) ([𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗])
𝑐
= [𝑚𝑖𝑗]

𝑐 ∪̃ [𝑛𝑖𝑗]
𝑐.  

Proof. 
1) For all 𝑖 and 𝑗,  

([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗])
𝑐
= [𝑚𝑎𝑥{𝑚𝑖𝑗 , 𝑛𝑖𝑗}]

𝑐
 

                                                                               = 1 − 𝑚𝑎𝑥{𝑚𝑖𝑗 , 𝑛𝑖𝑗} 

                                                                               = 𝑚𝑖𝑛{1 −𝑚𝑖𝑗 , 1 − 𝑛𝑖𝑗} 

                                                                               = [𝑚𝑖𝑗]
𝑐 ∩̃ [𝑛𝑖𝑗]

𝑐. 

2) It is similar to the proof 1).  
 
Proposition 7. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗], [𝑘𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then,  

1) [𝑚𝑖𝑗] ∪̃ ([𝑛𝑖𝑗] ∩̃ [𝑘𝑖𝑗]) = ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗]) ∩̃ ([𝑚𝑖𝑗] ∪̃ [𝑘𝑖𝑗]). 

2) [𝑚𝑖𝑗] ∩̃ ([𝑛𝑖𝑗] ∪̃ [𝑘𝑖𝑗]) = ([𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗]) ∪̃ ([𝑚𝑖𝑗] ∩̃ [𝑘𝑖𝑗]). 

 
Proof.  

1) For all 𝑖 and 𝑗, 

[𝑚𝑖𝑗] ∪̃ ([𝑛𝑖𝑗] ∩̃ [𝑘𝑖𝑗]) = 𝑚𝑎𝑥{𝑚𝑖𝑗 , ([𝑛𝑖𝑗] ∩̃ [𝑘𝑖𝑗])} 

                                                                      = 𝑚𝑎𝑥{𝑚𝑖𝑗 , (𝑚𝑖𝑛{𝑛𝑖𝑗 , 𝑘𝑖𝑗})} 

                                                              = 𝑚𝑖𝑛 {𝑚𝑎𝑥{𝑚𝑖𝑗 , 𝑛𝑖𝑗},𝑚𝑎𝑥{𝑚𝑖𝑗 , 𝑘𝑖𝑗}} 

                                                                      = 𝑚𝑖𝑛{([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗]), ([𝑚𝑖𝑗] ∪̃ [𝑘𝑖𝑗])}       

                                                                      = ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗]) ∩̃ ([𝑚𝑖𝑗] ∪̃ [𝑘𝑖𝑗]). 

2) It is similar to the proof 1).  
 

 
Definition 27. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . The not union of [𝑚𝑖𝑗] and [𝑛𝑖𝑗] is 

defined as [𝑘𝑖𝑗], where 𝑘𝑖𝑗 = 𝑚𝑎𝑥{1 − 𝑚𝑖𝑗 , 1 − 𝑛𝑖𝑗} for each 𝑖 and 𝑗, and it is denoted 

by [𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗].  

 
Definition 28. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . The not intersection of [𝑚𝑖𝑗] and 

[𝑛𝑖𝑗] is defined as [𝑘𝑖𝑗], where 𝑘𝑖𝑗 = 𝑚𝑖𝑛{1 − 𝑚𝑖𝑗 , 1 − 𝑛𝑖𝑗}, for each 𝑖 and 𝑗, and it is 

denoted by [𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗]. 

 
Proposition 8. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗], [𝑘𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, 

1) [𝑚𝑖𝑗] ∪̃ [𝑚𝑖𝑗] = [𝑚𝑖𝑗]
𝑐 . 

2) [𝑚𝑖𝑗] ∪̃ [0] = [1]. 

3) [𝑚𝑖𝑗] ∪̃ [1] = [𝑚𝑖𝑗]
𝑐 . 

4) [𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗] = [𝑛𝑖𝑗] ∪̃ [𝑚𝑖𝑗]. 

5) [𝑚𝑖𝑗] ∪̃ ([𝑛𝑖𝑗] ∪̃ [𝑘𝑖𝑗]) = ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗]) ∪̃ [𝑘𝑖𝑗].  

Proof. 
 The proof is obvious from Definitions 22, 25 and 27.  
  
Proposition 9. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗], [𝑘𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, 

1) [𝑚𝑖𝑗] ∩̃ [𝑚𝑖𝑗] = [𝑚𝑖𝑗]
𝑐 . 

2) [𝑚𝑖𝑗] ∩̃ [0] = [𝑚𝑖𝑗]
𝑐 . 
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3) [𝑚𝑖𝑗] ∩̃ [1] = [0]. 

4) [𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗] = [𝑛𝑖𝑗] ∩̃ [𝑚𝑖𝑗]. 

5) [𝑚𝑖𝑗] ∩̃ ([𝑛𝑖𝑗] ∩̃ [𝑘𝑖𝑗]) = ([𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗]) ∩̃ [𝑘𝑖𝑗].  

Proof. 
 The proof is obvious from Definition 22, 25 and 28.  
  
Proposition 10. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, De Morgan’s inclusions are 

true. 

1) ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗])
𝑐

⊆̃ [𝑚𝑖𝑗]
𝑐 ∩̃ [𝑛𝑖𝑗]

𝑐. 

2) ([𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗])
𝑐

⊆̃ [𝑚𝑖𝑗]
𝑐 ∪̃ [𝑛𝑖𝑗]

𝑐.  

Proof.  
The proof is obvious from Definitions 20, 27 and 28.  
  
 
Proposition 11. Let [𝑚𝑖𝑗], [𝑛𝑖𝑗] ∈ Z-GFS𝛽CR 𝑝×𝑞 . Then, De Morgan’s laws are true. 

1) ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗])
𝑐

= [𝑚𝑖𝑗]
𝑐 ∩̃ [𝑛𝑖𝑗]

𝑐. 

2) ([𝑚𝑖𝑗] ∩̃ [𝑛𝑖𝑗])
𝑐

= [𝑚𝑖𝑗]
𝑐 ∪̃ [𝑛𝑖𝑗]

𝑐.  

 
Proof. 

1) For each 𝑖 and 𝑗,  

 ([𝑚𝑖𝑗] ∪̃ [𝑛𝑖𝑗])
𝑐

= [𝑚𝑎𝑥{1 −𝑚𝑖𝑗 , 1 − 𝑛𝑖𝑗}]
𝑐
 

                                = 1 −𝑚𝑎𝑥{1 − 𝑚𝑖𝑗 , 1 − 𝑛𝑖𝑗} 

                                = 𝑚𝑖𝑛{1 − (1 −𝑚𝑖𝑗), 1 − (1 − 𝑛𝑖𝑗)} 

                                = 𝑚𝑖𝑛{1 − 𝑚𝑖𝑗
𝑐 , 1 − 𝑛𝑖𝑗

𝑐 } 

                                  = [𝑚𝑖𝑗]
𝑐 ∩̃ [𝑛𝑖𝑗]

𝑐 . 

2)  It is similar to the proof 1).  

 4.  A novel approach to MAGDM using Z-GFS𝜷CR matrices 

 In this section, a decision-making algorithm is created to select the best object 
from a list of possible objects Ω based on a decision maker’s chosen parameters. 

4.1. Description and Process 

Let 𝛺 = {𝑣1, 𝑣2, . . . , 𝑣𝑝} be 𝑝 alternatives and 𝐸 = {𝑏1, 𝑏2, . . . , 𝑏𝑞} be the set of all 

attributes. 
Step 1: Choose the appropriate subsets of the attribute set 𝐸 and construct the 

fuzzy soft 𝛽-covering set (𝑁𝑙 , 𝐵𝑙) over Ω, where 𝑙 = 1,2, . . . , 𝑘, for each attribute sets. 

Define a matrix [𝑚𝑖𝑗]𝑝×𝑞 = (

𝑚11 … 𝑚1𝑞
⋮ ⋱ ⋮
𝑚𝑝1 … 𝑚𝑝𝑞

) , which is known as the Z-fuzzy soft 𝛽-

covering rough matrix of (𝑁𝑙 , 𝐵𝑙) of order 𝑝 × 𝑞 over Ω. 
Step 2: Let (𝑁𝑙 , 𝐵𝑙) be a FS𝛽CS over Ω. Let 𝛽 = 0.5. Compute the 𝛽-level soft set of 

(𝑁𝑙 , 𝐵𝑙) by the formula,  
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𝑁𝛽(𝑏𝑗)(𝑣𝑖) = {
1,  if  𝑁(𝑏𝑗)(𝑣𝑖)   ≥   𝛽 ;

0,  if  𝑁(𝑏𝑗)(𝑣𝑖)   <   𝛽 .
 

Then the ordered pair 𝒥 = (Ω, 𝐿𝑙) is the FS𝛽CAS with respect to 𝛽-level soft set of 
each (𝑁𝑙 , 𝐵𝑙) are computed. 

Step 3: Using 𝛽-level soft set, calculate the fuzzy soft 𝛽-adhesion of each 𝑣𝑖 ∈ Ω. 

Now compute the FS𝛽CLA and FS𝛽CUA by using the formula, 𝐹𝑆(𝑀) = {𝑣𝑖 ∈

Ω: 𝑆𝐴𝛽(𝑣𝑖) ⊆ 𝑀} and 𝐹𝑆(𝑀) = {𝑣𝑖 ∈ Ω: 𝑆𝐴𝛽(𝑣𝑖) ∩ 𝑀 ≠ ∅}. By means of FS𝛽CLA and 

FS𝛽CUA , calculate the sets, 𝑃𝑜𝑠(𝑀) = 𝐹𝑆(𝑀), 𝑁𝑒𝑔(𝑀) = Ω − 𝐹𝑆(𝑀), and 𝐵𝑛𝑑(𝑀) =

𝐹𝑆(𝑀) − 𝐹𝑆(𝑀). 

Step 4: By using Definition 14, construct the Z-GFS𝛽CR matrices of order 𝑝 × 𝑞 
over Ω. 

Step 5: By using Saaty’s (2008) nine-point scale, construct the pairwise 
comparison matrices for each criteria according to the three experts. Calculate the 
weight for each criteria using AHP method. 

Step 6: The calculated weight [𝑊𝐵𝑙] are multiplied with its corresponding Z-

GFS𝛽CR matrix and it is denoted by [𝐷𝐵𝑙], where [𝑚𝑖𝑗] × [𝑊𝐵𝑙] = [𝐷𝐵𝑙]. 

Step 7: Select the value for 𝑎 and by means of max-min technique, determine the 
best alternative from the list of 𝛺. 

 

4.2. Algorithm 

• Construct the fuzzy soft 𝛽-covering set (𝑁𝑙 , 𝐵𝑙) based on the important 
parameters. 

• Compute the 𝛽-level soft set. 

• Calculate 𝐹𝑆(𝑀) and 𝐹𝑆(𝑀) by using fuzzy soft 𝛽-adhesion and find Pos(M), 

Neg(M) and Bnd(M). 
• Create the Z-GFS𝛽CR matrix. 
• Compute the weight for each criteria by means of AHP method with the help of 

experts (interviewers). 
• Multiply each [𝑊𝐵𝑙] with the corresponding Z-GFS𝛽CR matrices. 

• By means of max-min technique, determine the best alternative from 𝛺.   

4.3. Illustrative Example 

The steps mentioned in the algorithm are demonstrated in the following 
numerical example. 

Example 3. A university is conducting an interview for an assistant professor job. 
The candidates who have applied for the interview form a set 𝛺 =
{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and the attribute set includes their important features such as 
teaching skill (𝑏1), experience (𝑏2), presentation skill (𝑏3), communication skill (𝑏4), 
academic records (𝑏5), time management Skills (𝑏6), and patience (𝑏7). 

Step 1: Let the choice parameters of the three interviewers (Interviewer 1, 
Interviewer 2 and Interviewer 3) are 𝐵1 = {𝑏1, 𝑏2, 𝑏3, 𝑏5}, 𝐵2 = {𝑏1, 𝑏4, 𝑏5, 𝑏6} and 
𝐵3 = {𝑏2, 𝑏4, 𝑏5, 𝑏7} ⊆ 𝐸 respectively. 

The tabular representation of FS𝛽CS (𝑁1, 𝐵1), (𝑁2, 𝐵2) and (𝑁3, 𝐵3) are shown in 
Table 3, 4 and 5 respectively.  

Step 2: The tabular representation of 𝛽-level soft sets 𝐿1((𝑁1, 𝐵1),0.5), 
𝐿2((𝑁2, 𝐵2),0.5) and 𝐿3((𝑁3, 𝐵3),0.5) are shown in Table 6, 7 and 8 respectively. 
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Table  3. Tabular representation for (𝑁1, 𝐵1) 

 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 
𝑣1 0.5 0.2 0.5 0 0.6 0 0 
𝑣2 0.3 0.9 0.7 0 0.7 0 0 
𝑣3 0.7 0.3 0.8 0 0.6 0 0 
𝑣4 0.2 0.5 0.6 0 0.1 0 0 
𝑣5 0.9 0.4 0.8 0 0.5 0 0 
𝑣6 0.4 0.6 0.9 0 0.2 0 0 

Table 4. Tabular representation for (𝑁2, 𝐵2) 

 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 
𝑣1 0.6 0 0 0.4 0.7 0.4 0 
𝑣2 0.5 0 0 0.3 0.2 0.5 0 
𝑣3 0.8 0 0 0.1 0.1 0.7 0 
𝑣4 0.3 0 0 0.7 0.5 0.1 0 
𝑣5 0.1 0 0 0.6 0.8 0.2 0 
𝑣6 0.4 0 0 0.4 0.6 0.3 0 

Table 5. Tabular representation for (𝑁3, 𝐵3) 

 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 
𝑣1 0 0.7 0 0.1 0.5 0 0.5 
𝑣2 0 0.2 0 0.6 0.7 0 0.7 
𝑣3 0 0.6 0 0.3 0.6 0 0.2 
𝑣4 0 0.1 0 0.8 0.4 0 0.5 
𝑣5 0 0.4 0 0.9 0.7 0 0.8 
𝑣6 0 0.5 0 0.4 0.8 0 0.6 

Table 6. Tabular representation for 𝛽-level soft set 𝐿1((𝑁1, 𝐵1),0.5) 

 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 
𝑣1 1 0 1 0 1 0 0 
𝑣2 0 1 1 0 1 0 0 
𝑣3 1 0 1 0 1 0 0 
𝑣4 0 1 1 0 0 0 0 
𝑣5 1 0 1 0 1 0 0 
𝑣6 0 1 1 0 0 0 0 
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Table 7. Tabular representation for 𝛽-level soft set 𝐿2((𝑁2, 𝐵2),0.5) 
 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 
𝑣1 1 0 0 0 1 0 0 
𝑣2 1 0 0 0 0 1 0 
𝑣3 1 0 0 0 0 1 0 
𝑣4 0 0 0 1 1 0 0 
𝑣5 0 0 0 1 1 0 0 
𝑣6 0 0 0 1 1 0 0 

Table 8. Tabular representation for 𝛽-level soft set 𝐿3((𝑁3, 𝐵3),0.5) 

 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 
𝑣1 0 1 0 0 1 0 1 
𝑣2 0 0 0 1 1 0 1 
𝑣3 0 1 0 0 1 0 0 
𝑣4 0 0 0 1 0 0 1 
𝑣5 0 0 0 1 1 0 1 
𝑣6 0 1 0 0 1 0 1 

  
Step 3: The fuzzy soft 𝛽-adhesion for (𝑁1, 𝐵1) are 𝑆𝐴𝛽(𝑣1) = {𝑣1, 𝑣3, 𝑣5}, 

𝑆𝐴𝛽(𝑣2) = {𝑣2}, 𝑆𝐴𝛽(𝑣3) = {𝑣1, 𝑣3, 𝑣5}, 𝑆𝐴𝛽(𝑣4) = {𝑣4, 𝑣6}, 𝑆𝐴𝛽(𝑣5) = {𝑣1, 𝑣3, 𝑣5} and 

𝑆𝐴𝛽(𝑣6) = {𝑣4, 𝑣6}. 

The fuzzy soft 𝛽-adhesion for (𝑁2, 𝐵2) are 𝑆𝐴𝛽(𝑣1) = {𝑣1}, 𝑆𝐴𝛽(𝑣2) = {𝑣2, 𝑣3}, 

𝑆𝐴𝛽(𝑣3) = {𝑣2, 𝑣3}, 𝑆𝐴𝛽(𝑣4) = {𝑣4, 𝑣5, 𝑣6}, 𝑆𝐴𝛽(𝑣5) = {𝑣4, 𝑣5, 𝑣6} and 𝑆𝐴𝛽(𝑣6) =

{𝑣4, 𝑣5, 𝑣6}.  
The fuzzy soft 𝛽-adhesion for (𝑁3, 𝐵3) are 𝑆𝐴𝛽(𝑣1) = {𝑣1, 𝑣6}, 𝑆𝐴𝛽(𝑣2) = {𝑣2, 𝑣5}, 

𝑆𝐴𝛽(𝑣3) = {𝑣3}, 𝑆𝐴𝛽(𝑣4) = {𝑣4}, 𝑆𝐴𝛽(𝑣5) = {𝑣2, 𝑣5} and 𝑆𝐴𝛽(𝑣6) = {𝑣1, 𝑣6}.  

Let 𝑀 = {𝑣1, 𝑣3, 𝑣5, 𝑣6}, 𝑂 = {𝑣2, 𝑣3, 𝑣6} and 𝑃 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} are the subsets of 
candidates selected by the three interviewers respectively. 

For 𝑀, 𝐹𝑆(𝑀) = {𝑣1, 𝑣3, 𝑣5}, 𝐹𝑆(𝑀) = {𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, 𝑃𝑜𝑠(𝑀) = {𝑣1, 𝑣3, 𝑣5}, 

𝑁𝑒𝑔(𝑀) = {𝑣2} and 𝐵𝑛𝑑(𝑀) = {𝑣4, 𝑣6}. 

For 𝑂, 𝐹𝑆(𝑂) = {𝑣2, 𝑣3}, 𝐹𝑆(𝑂) = {𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, 𝑃𝑜𝑠(𝑂) = {𝑣2, 𝑣3}, 𝑁𝑒𝑔(𝑂) =
{𝑣1} and 𝐵𝑛𝑑(𝑂) = {𝑣4, 𝑣5, 𝑣6}. 

For 𝑃, 𝐹𝑆(𝑃) = {𝑣3, 𝑣4}, 𝐹𝑆(𝑃) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, 𝑃𝑜𝑠(𝑃) = {𝑣3, 𝑣4}, 

𝑁𝑒𝑔(𝑃) = ∅ and 𝐵𝑛𝑑(𝑃) = {𝑣1, 𝑣2, 𝑣5, 𝑣6}. 
Step 4: The Z-GFS𝛽CR matrices for (𝑁1, 𝐵1), (𝑁2, 𝐵2) and (𝑁3, 𝐵3) are 

[𝑚𝑖𝑗] =

(

 
 
 
 

1 1 1 1 1 1 1
0 0 0 0 0 0 0
1 1 1 1 1 1 1
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
1 1 1 1 1 1 1
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎

)

 
 
 
 

, 

[𝑛𝑖𝑗] =

(

 
 
 
 

0 0 0 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎

)

 
 
 
 

 , 
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[𝑘𝑖𝑗] =

(

 
 
 
 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
1 1 1 1 1 1 1
1 1 1 1 1 1 1
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎

)

 
 
 
 

. 

Step 5:  By using Saaty’s (2008) nine-point scale, the comparison matrices for 
each criterion according to the three interviewers are 

𝐵1 =

(

 
 
 
 
 

1 5 2 1 4 1 4
1/5 1 1/4 1/5 1/2 1/3 1/6
1/2 4 1 2 3 1 2
1 5 1/2 1 4 2 4
1/4 2 1/3 1/4 1 1/2 1/5
1 3 1 1/2 2 1 1
1/4 6 1/2 1/4 5 1 1

)

 
 
 
 
 

, 

𝐵2 =

(

 
 
 
 
 

1 1/2 3 5 2 3 2
2 1 2 3 2 3 6
1/3 1/2 1 4 1 5 3
1/5 1/3 1/4 1 1/3 1/2 1
1/2 1/2 1 3 1 2 4
1/3 1/3 1/5 2 1/2 1 3
1/2 1/6 1/3 1 1/4 1/3 1

)

 
 
 
 
 

, 

 𝐵3 =

(

 
 
 
 
 

1 3 2 7 3 5 6
1/3 1 1/2 2 1 3 4
1/2 2 1 3 1/2 1 2
1/7 1/2 1/3 1 1/4 1/2 1/5
1/3 1 2 4 1 2 3
1/5 1/3 1 2 1/2 1 1/2
1/6 1/4 1/2 5 1/3 2 1

)

 
 
 
 
 

. 

By using AHP method, the weights for each criteria are calculated and it is 
attained as  

[𝑊𝐵1] =

(

 
 
 
 
 

0.244
0.035
0.189
0.224
0.052
0.133
0.123

)

 
 
 
 
 

,   [𝑊𝐵2] =

(

 
 
 
 
 

0.233
0.274
0.17
0.049
0.143
0.08
0.051

)

 
 
 
 
 

 and   [𝑊𝐵3] =

(

 
 
 
 
 

0.355
0.148
0.138
0.04
0.165
0.07
0.084

)

 
 
 
 
 

. 

Step 6: Multiply the weight of each parameters with the corresponding Z-GFS𝛽CR 
matrix. Let a = 0.6. 
[𝑚𝑖𝑗] × [𝑊𝐵1] = [𝐷𝐵1] 
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=

(

 
 
 
 

0.244 0.035 0.189 0.224 0.052 0.133 0.123
0 0 0 0 0 0 0
0.244 0.035 0.189 0.224 0.052 0.133 0.123
0.1464 0.021 0.1134 0.1344 0.0312 0.0798 0.0738
0.244 0.035 0.189 0.224 0.052 0.133 0.123
0.1464 0.021 0.1134 0.1344 0.0312 0.0798 0.0738

)

 
 
 
 

, 

[𝑛𝑖𝑗] × [𝑊𝐵2] = [𝐷𝐵2] 

=

(

 
 
 
 

0 0 0 0 0 0 0
0.233 0.274 0.17 0.049 0.143 0.08 0.051
0.233 0.274 0.17 0.049 0.143 0.08 0.051
0.1398 0.1644 0.102 0.0294 0.0858 0.048 0.0306
0.1398 0.1644 0.102 0.0294 0.0858 0.048 0.0306
0.1398 0.1644 0.102 0.0294 0.0858 0.048 0.0306

)

 
 
 
 

, 

[𝑘𝑖𝑗] × [𝑊𝐵3] = [𝐷𝐵3] 

=

(

 
 
 
 

0.213 0.088 0.0828 0.024 0.099 0.042 0.0504
0.213 0.088 0.0828 0.024 0.099 0.042 0.0504
0.355 0.148 0.138 0.04 0.165 0.07 0.084
0.355 0.148 0.138 0.04 0.165 0.07 0.084
0.213 0.088 0.0828 0.024 0.099 0.042 0.0504
0.213 0.088 0.0828 0.024 0.099 0.042 0.0504

)

 
 
 
 

. 

Step 7: By means of max-min technique,  

[𝐷𝐵1] ∧ [𝐷𝐵2] ∧ [𝐷𝐵3] = 𝑀𝑎𝑥 {𝑀𝑖𝑛{[𝐷𝐵1], [𝐷𝐵2], [𝐷𝐵3]}} 

= 

(

 
 
 
 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0.233 0.035 0.138 0.04 0.052 0.07 0.051
0.1398 0.021 0.102 0.0294 0.0312 0.048 0.0306
0.1398 0.035 0.082 0.024 0.052 0.042 0.0504
0.1398 0.021 0.0828 0.024 0.0312 0.042 0.0306

)

 
 
 
 

 

Hence, 𝑀𝑎𝑥 {𝑀𝑖𝑛{[𝐷𝐵1], [𝐷𝐵2], [𝐷𝐵3]}} = {𝑣1}. Thus, the best choice of three 

interviewers are {𝑣1}. So, the candidate {𝑣1} gets the job.  

4.4. Comparative analysis 

In this section, we compare Z-GFS𝛽CR matrices with GFSR matrices developed in 
(Muthukumar and Krishnan, 2018) to demonstrate the importance of our model in 
decision making method. Both the Z-GFS𝛽CR matrices and GFSR matrices are applied 
to real-life problems of finding the best alternative from the set of candidates applied 
for the job interview. Using GFSR matrices, we obtain {𝑣1} as the best alternative. 
Similarly, by applying our model Z-GFS𝛽CR matrices, we obtain the same {𝑣1} as the 
best alternative. From the analysis, we can say that our model is effective and 
feasible. 

5.  Conclusion 

 In our work, we have defined Z-FS𝛽CRS with respect to 𝛽-level soft set. The fuzzy 
soft 𝛽-covering lower and upper approximations of Z-FS𝛽CRS satisfy the properties 
of Pawlak’s rough approximations showing that the proposed Z-FS𝛽CRS is 
significant. A new type of matrix called Z-FS𝛽CR matrix is introduced and we re-
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defined the concept of Z-FS𝛽CR matrix by generalizing it. Each new definition is 
illustrated with examples for better understanding. Several algebraic properties and 
De Morgan’s laws are investigated based on the study of Z-GFS𝛽CR matrices. A novel 
MAGDM model is developed using the Z-GFS𝛽CR matrices to recruit the best 
applicant for the assistant professor job. Using the proposed MAGDM model, we 
found that the candidate {𝑣1} is the suitable one. Our MAGDM algorithm can be 
applied to any real-world problem which will give effective results. In future work, a 
generalized intuitionistic fuzzy soft rough matrix could be explored to develop a 
novel MAGDM model. 

Author Contributions: Conceptualization, P.S. and M.A.; methodology, P.S. and M.A.; 
software, P.S. and M.A.; validation, P.S. and M.A.; formal analysis, P.S. and M.A.; 
investigation, M.A.; writing—original draft preparation, P.S.; writing—review and 
editing, M.A.; visualization, P.S. and M.A.; supervision, M.A. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: We are grateful to Vellore Institute of Technology, Vellore for 
giving us this opportunity. 

Data Availability Statement: Not Applicable. 

Conflicts of Interest: The authors declare that they have no known competing 
financial interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References  

Ali, M. I. (2011). A note on soft sets, rough soft sets and fuzzy soft sets. Applied Soft 
Computing, 11 (4), 3329-3332.  

Cagman, N., & Enginoglu, S. (2010). Soft matrix theory and its decision making. 
Computers & Mathematics with Applications, 59 (10), 3308-3314.  

Cagman, N., & Enginoglu, S. (2012). Fuzzy soft matrix theory and its application in 
decision making. Iranian Journal of Fuzzy Systems, 9 (1), 109-119.  

Dubois, D., & Prade, H. (1990). Rough fuzzy sets and fuzzy rough sets. International 
Journal of General System, 17(2-3), 191-209.  

Feng, F., Li, C., Davvaz, B., & Ali, M. I. (2010). Soft sets combined with fuzzy sets and 
rough sets: a tentative approach. Soft computing, 14, 899-911.  

Greco, S., Matarazzo, B., & Slowinski, R. (2001). Rough sets theory for multicriteria 
decision analysis. European journal of operational research, 129 (1), 1-47.  

Gurmani, S. H., Chen, H., & Bai, Y. (2022). Multi-attribute group decision-making 
model for selecting the most suitable construction company using the linguistic 
interval-valued T-spherical fuzzy TOPSIS method. Applied Intelligence. 
https://doi.org/10.1007/s10489-022-04103-0. 



Generalized Z-fuzzy soft β-covering based rough matrices and its application … 

151 

Maji, P. K., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision 
making problem. Computers & Mathematics with Applications, 44 (8-9), 1077-1083.  

Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & Mathematics 
with Applications, 45 (4-5),  555-562.  

Molodtsov, D. (1999). Soft set theory - First results. Computers & Mathematics with 
Applications, 37 (4-5), 19-31.  

Muthukumar, P., & Krishnan, G. (2018). Generalized Fuzzy Soft Rough Matrices and 
Their Applications in Decision-Making Problems. International Journal of Fuzzy 
Systems, 20(2), 500-514.  

Pawlak, Z. (1982). Rough sets. International journal of computer & information 
sciences, 11 (5), 341-356.  

Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill, New York. 

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. 
International journal of services sciences, 1 (1), 83-98.  

Sharma, H. K., Kumari, K., & Kar, S. (2018). Air passengers forecasting for Australian 
airline based on hybrid rough set approach. Journal of Applied Mathematics, 
Statistics and Informatics, 14(1), 5-18.  

Sharma, H. K., Kumari, K., & Kar, S. (2021). Forecasting Sugarcane Yield of India 
based on rough set combination approach. Decision Making: Applications in 
Management and Engineering, 4(2), 163-177.  

Sharma, H. K., Singh, A., Yadav, D., & Kar, S. (2022). Criteria selection and decision 
making of hotels using Dominance Based Rough Set Theory. Operational Research in 
Engineering Sciences: Theory and Applications, 5(1), 41-55.  

Tufail, F., Shabir, M., & Abo-Tabl, E. S. A. (2022). A Comparison of Promethee and 
TOPSIS Techniques Based on Bipolar Soft Covering-Based Rough Sets. IEEE Access, 
10, 37586-37602.  

Vijayabalaji, S. (2014). Multi-decision making in generalized soft-rough matrices. 
Mathematical Sciences-International Research Journal, 3 (1), 19-24.  

Yang, B. (2022). Fuzzy covering-based rough set on two different universes and its 
application. Artificial Intelligence Review, 55, 4717-4753.  

Yüksel, Ş., Ergül, Z. G., & Tozlu, N. (2014). Soft covering based rough sets and their 
application. The Scientific World Journal, Article ID 970893, 1-9. 

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338-353.  

Zhan, J., & Wang, Q. (2019). Certain types of soft coverings based rough sets with 
applications. International Journal of Machine Learning and Cybernetics, 10 (5), 
1065-1076.  

Zhan, J., & Sun, B. (2019). Covering-based soft fuzzy rough theory and its application 
to multiple criteria decision making. Computational and Applied Mathematics, 38 (4), 
1-27.  

Zhang, H., Liang, H., & Liu, D. (2004). Two new operators in rough set theory with 
applications to fuzzy sets. Information Sciences, 166 (1-4), 147-165.  



Pavithra and Manimaran/Decis. Mak. Appl. Manag. 6(1) (2023) 134-152 

152 

Zhang, L., & Zhan, J. (2019). Fuzzy soft 𝛽-covering based fuzzy rough sets and 
corresponding decision-making applications. International Journal of Machine 
Learning and Cybernetics, 10 (6), 1487-1502.  

Zhu, W., & Wang, F. Y. (2007). On three types of covering-based rough sets. IEEE 
transactions on knowledge and data engineering, 19 (8), 1131-1144.  

Zhu, W., & Wang, F. Y. (2012). The fourth type of covering-based rough sets. 
Information Sciences, 201, 80-92. 

© 2023 by the authors. Submitted for possible open access publication under 

the terms and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 


