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Abstract: Technological advancements, abrupt changes in market conditions,
and political reforms, among other things, necessitate strong regulatory
oversight, and accurate measurement of performance related indicators. The
more accurate, information rich, and transparent these
measurements/signals, the lower the level of uncertainty felt by value chain
participants, who are thus able to recognize and observe whether the market’s
state is efficient. Its lack, may lead to indecisiveness, translating into false
interpretations that could lead to wrong policy directions. This paper provides
an ex-post evaluation tool intending to deliver additional insights or quality
information that would aid the regulator in assessing the state of the market.
The tool is applied to the UK wholesale natural gas market for the period
between 2011 and 2020, assessing and testing the market’s weak-form
efficiency. It claims that today’s gas prices reflect a specific type of information,
primarily past gas prices, and that only new information can help predict
future prices. In this manuscript, based solely on a limited and available
untapped dataset (day-ahead price time series), and working under the
assumption that gas prices are the result of market processes, a variety of
information metrics (gas price randomness, distribution of extreme prices,
ability to predict prices - based on historical sets) is extracted with the use of
suitable mathematical statistical models. A weighted entropy index is then
computed, and measures the state of the commodity market. The results
indicate that the analysis has helped gain information, thus reducing
uncertainty (relative to a pre-analysis) by 86.5 %. Additionally, there is
sufficient evidence that the UK natural gas prices are weak-form efficient.
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1. Introduction

Trading goods is an exchange between the owner and another entity for money.
This can occur immediately or at a certain time in the future (future contracts). The
latter form of contract is gaining grounds, having as aim, to hedge or make speculative
profits. International institutions, such as the World Bank, produce commodity market
outlooks that provide market analysis for major commodity groups (energy, metals,
and others). These reports can forecast prices for up to 46 commodities, including
energy. Energy regulators at the national level conduct additional market analysis as
they continuously work to ensure fair treatment of all market participants, thereby
enabling competition, to drive down prices, protect consumer’ interests, and conduct
surveys to measure the performance of value chain participants and others. These
regulator’s actions result in reports on the following dimensions: competition,
customer affordability, costs of balancing systems, and so on. For example, the report
on the state of the energy market, produced by Great Britain’s independent energy
regulator, OFGEM, is an important annual report that contains the following:
information on supplier profit margins, number of consumers who report not having
to change suppliers, average wholesale day-ahead prices, and year-on-year maximum
demand during winter, among others.

Such metrics analytics can be used to understand how difficult it is for countries to
stabilize wholesale and retail commodity prices (at the national level), the existence
of international cartels (at the international level), and the complex relationship
between governments of exporting and importing countries (in terms of contract
agreements, quota agreements, etc.). These reports and outlooks are aimed at most
commodity value chain participants, including futures and speculation traders. As a
result, regulators conduct quantitative and qualitative means market analysis. These
measures are extensive and frequently based on data that includes prices, quantities
(supply and demand), and tariffs. The quantitative analyses range from the reading
and analysis of descriptive statistics in the data to the development of in-house
statistical methods for forecasting commodity prices under various scenarios, and
identifying the risks associated with such forecasts. The methods they use for their
quantitative approach can be universally known, accepted, and applied everywhere
by most stakeholders, or they can be market specific.

An example of a quantity that competition regulators commonly use is the
Herfindahl-Hirschman Index (HHI); it is used to measure market concentration. This
method is internationally accepted as an indicator of the competition level. The
information required for calculating the HHI is normally kept in-house and specific to
the needs of the regulators and is not publishable information reflecting the state of
the market, especially if the information contains commercial sensitive information.

The suggested methodology in this paper complements the work done by
commodity regulators and provides an ex-post evaluation tool to deliver additional
insights into the functioning of markets. It feeds into the activity of measuring
performance and ensures that regulators meet their objectives. The Authors will
analyze the country-specific individual wholesale market signals by suggesting an in-
depth analysis of price changes using mathematical and statistical methods
complementing each other. The aim is to extract information relevant to market
participants and test the validity of the theory of efficient markets.

There is a broad definition of efficient markets in the literature. It primarily refers
to liquid trade, or transparent prices (most importantly, exchange houses, clearing
agencies, hubs, online platforms, etc., all show full information of the trades witnessed
in a certain time period). It also refers to places where customers and traders have a
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free choice of selection (anyone, person or entity, can buy/ sell from/ to anyone) and
traders or suppliers have a fair rate, premium, or profits over their transactions/ deals.
Moreover, the people or entities participating in the market trades tend to be short
and long-term consumers of the commodity or hedgers in some cases, and less and
less speculative in nature (Nick, 2016).

The theory of efficient markets states, from a conceptual and rather theoretical
standpoint, that all past information in a given market, whether public or private, is
discounted in current gas prices. There are numerous variations on this definition in
the literature. The weak form of market efficiency will be tested in this manuscript,
and it claims that a specific type of information, primarily pas gas prices, is reflected
in today’s gas prices. Considering historical prices, no additional technical analysis can
provide traders with information about future prices. Only new information can assist
in predicting future prices. This leaves no room for any value chain participant to
exploit and predict future prices, to profit with minimal risk. This definition is similar
to the random walk theory, which states that no past movement of gas prices can be
used to predict future price movement; thus, there is an equal chance that gas prices
will rise or fall in the future.

There is no such thing as weak-efficient market for a particular commodity. In both
space and time, the degree of efficiency is not absolute. Some markets are more
efficient than others, and are distinguished by commodity liquidity, among other
characteristics that make information symmetric to some extent. Even if the flow of
information becomes asymmetric at times due to the presence of liquidity, trading
options, such as arbitrage, emerge, and restore efficiency to acceptable levels.

Given assumption that prices are the result of market processes, the authors
believe that there is a wealth of information available that is currently untapped. Our
contribution is to investigate the information contained inherent in prices by
measuring the following signals, for a given market, with a focus on the UK wholesale
natural gas hub. The following signals will be tested:

- The Shannon entropy signal enables capturing the level of uncertainty
(randomness) of gas prices time series without imposing any constraints on
its theoretical probability distribution.

- Efficient markets assume commodity prices normalcy, so there is minimal
probability of an extreme event occurring above a certain level. Most energy
markets, are inefficient in terms of extreme events and are thus heavily
influenced by unpredictable extreme prices, leaving their price distribution
vulnerable to fat tail risks. Thus, the record theory will be used to understand
the behavior of tail risk, and the distribution of extreme prices will be
evaluated. The authors specifically want to determine whether the underlying
observations of a records series are independent and identically distributed,
unlike fat tails.

The Shannon and records theories are relevant to our analysis and regulators,
especially in markets where available data on supply and demand is scarce. By scarce,
itis not meant absence, nor that any actor does not observe the information. However,
it is meant that the flow of information is not symmetric and unavailable for all value
chain participants at all times. Such data are critical to the observation and analysis as
they produce market equilibrium prices. This document will show that robust results
can be obtained without requiring full information about the process used to generate
equilibrium gas prices.

- The predictability of daily gas prices will be evaluated using parametric
models based on the history of a gas price return time series.
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- Nonparametric deep learning models will be used to assess the predictability
of daily gas prices based on the history of a gas price return time series.

The weighted measure of added information will be computed after the market
signals have been extracted and measured. This information will provide the regulator
with more evidence about the state of the market, allowing it to better perform its
market oversight duties.

This paper provides an ex-post evaluation tool to the gas value chain participants,
with the aim to deliver additional insights into the functioning of markets. The tool is
essentially composed of several mathematical and statistical methods complementing
each other, and the result of which is an index-value (Mutual Information, MI), ranging
from zero to one. In case the value approaches 1, this strongly suggests that the gas
market under study exhibit prices that are weak-form efficient. In the other extreme
case (MI equals to zero), implies non-efficiency in the gas market. To test the tool, an
empirical illustration is performed on the UK market, more specifically in the period
that spans from 2011 to end of 2020. In an attempt to test the performance of the tool
and compare our results to the existent evidence on the state of the UK gas market
found in recent literature (briefly summarized in section three). The remainder of this
paper is structured as follows. Section 2 defines the materials and methods and
presents related literature. Section 3 describes the case, presents the data and results,
and interprets them. Section 4 concludes the paper by making recommendations for
future research.

2. Methods

Main Information was extracted from different resources investigating the data.
These resources are called signals and are denoted by S;,i = 1,...,I, where S; is the
i*" signal and I is the total number of considered signals. To analyze the performance
of each signal, one must explore a family of models denoted by F; = “the set of possible
models that can be applied in order to extract a measure of signal S;”. The selection of
the elements of each family of models is based on three precise criteria: literature, data
availability/structure, and expert/modeler opinion. Subsequently, the best suitable
model is selected based on mathematical and statistical (e.g., statistical tests) analysis,
and this optimal model within family F; is denoted by M;,i = 1,...,I. Once the best
model is selected, the result is either conclusive or nonconclusive. Certainly, the user
can choose to have a non-binary value and measure the degree of conclusiveness;
however, to the best of the author’s knowledge and understanding, this adds another
level of subjectivity and complexity.

The above finding is denoted by the following expression:

(1)

In the case of C; = 1, one should reflect on the selection of M; : was it well justified
in terms of closed mathematical and statistical arguments or was the optimal model
selected partially based on subjective assumptions? To assess this, the following
binary variable is introduced:

_ { 1if M; is conclusive
' 0 otherwise

1if M; is justified

. = 2

Ji { 0 otherwise (2)

Now, to measure the efficiency of the market given signal S;, the random variable

describing the efficiency of the market is described by the following probability
distribution (See Eq. (3). and Eq. (4).):
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(P [Efficient/Signal;], P [not — Ef ficient/Signal;] ) (3)
with:
P [Ef ficient/Signal;] = 1 — P [not — Ef ficient /Signal;] 4)

The data gathered on the decision variables thus far will result in the estimation
of the probabilities in all possible scenarios for signal S;, as presented in Table 1.

Table 1. P [Ef ficient/Signal;] (or P [not — Ef ficient/Signal;]) in all
possible scenarios.

G
0 1
0 1 3 1
| 2 PR
1 1 4
Not available 2 (or 0)

The authors deal with the classical discrete distribution; hence, the classical
Shannon distribution can be used to extract the amount of information related to
signal S; by computing the corresponding entropy. In the case of conclusive results
C; = 1, regardless of how justified the model is, there is additional information, and
the regulator can measure such an improvement based on significant (more
discriminatory) probability of efficiency P [Efficient/Signal;] # 0.5. In other
words, in a conclusive context the information about how efficient the market is,
brought by the corresponding signals is far from the uniform (less informative) case
by a significant probability distance, i.e. (See Eq. (5).),

|P [Ef ficient/Signal;] — 0.5] = 0.25 (5)

The case of C; = 0, and J; = 0 is inconclusive, and the selection of the optimal
model is not justified and does not lead to concrete results. In this case, signal S; does
not add information about the efficiency of the market and P [Ef ficient/Signal;] =
0.5. Such a signal shall be eliminated from the analysis, or another theoretical aspect
revealing more information regarding the efficiency of the market is to be investigated
and exploited. Finally, the case of ;= 0 and J; =1 cannot occur because a
mathematically/statistically justified model is conclusive.

Moving forward in the analysis, a fair question arises: how to attribute and allocate
weights to each signal? The latter is defined by the variable W;,i = 1,...,1,and can be
defined by a multitude of approaches. In this context, the weights will be allocated
based on the analytic hierarchy process (AHP) model.

Finally, to show whether and how these different signals improve the quality of the
information regarding efficiency, the difference between information less entropy
(based on a uniform prior distribution), denoted by #,,i,, and the obtained
aggregated (weighted) post entropy 3, ssterior 1S calculated. This quantity is called the
mutual information (MI) and translates into measuring the reduced amount of
uncertainty; it is also defined as shown in Eq. (6).

MI = }[prior - }[posterior (6)

The classical approach of the decision theory, AHP, and the MI, will be defined and
explained in the next sections.
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2.1. Measure of Shannon entropy (Signal 1)

Shannon entropy as a signal studies the stability of the underlying time series in
terms of probabilistic distribution by providing information on the amount of hidden
uncertainty in a given random variable (Lesne, 2014). The higher the uncertainty in
the short-term, the more efficient the market, with the corresponding time series,
tends to be. First, the prices’ rates of returns are calculated, and a binary random
variable r; is generated, and expressed in Eq. (7).

1if return is positive
= (7)
0 if return is nonpositive

The original commodity prices should not be used due the following reasons. Prices
must be non-negative, whereas returns or log-returns can be any value, making them
easier to model. Furthermore, prices typically have a unit root, whereas returns are
more likely to be stationary. It is well known that stationary time series have many
convenient properties for econometric analysis. A non-stationary, time series means
that the moments will change over time. For example, in the case of prices, the mean
and variance would both be affected by the previous period’s price. Taking the percent
change (or log difference) removes this effect often. This is a common measure, in
which the rates of return are calculated and the logarithmic function is applied
(Meucci, 2011). It informs the user that there is a stable trend and that the returns are
close to zero. This could imply that the behavior is stationary and stable.

The random variable under consideration is simply the time series of price returns
denoted by X in Eq. (8). The random variable X’s entropy is defined as follows:

HX) = = s Sl p + 10g> () (8)

where each outcome i (in our case return labels) has a probability p; of appearance
in the series, with n being the total number of outcomes. This is commonly used to
describe a discrete set of data. When entropy approaches 1, the underlying uncertainty
is maximized and the random variable under consideration behaves like a uniform
distribution. However, when entropy is close to 0, it almost certainly implies a context
where a Dirac distribution can be considered. It should be noted that Dirac is a
probabilistic distribution that assigns full probability to one event in a space of events.
In other words, there exists an event A for a Dirac distribution such that P[A] = 1. This
means that event A will occur, and there is no fuzziness in explaining the random
variable’s behavior. In this case, the regulator will use this information to determine
whether the market is efficient, which is critical for the latter to plan accordingly.

The authors have also considered different sequences Seq; = {1, 2,3} of negative
and positive returns r; over one, two, and three consecutive days/observations. In the
first case (S.4; = 1, one day), the space of possible outcomes is limited to two (either
one positive return or one negative); in the case of two consecutive days occurring at
time t and t+ 1 (Seq; = 2), there exist four possible outcomes to analyze (r; =
0,77431=0); ; =0,1.4, =1); (nr = 1,144 = 0); (1 = 1,714, = 1), thus the space of
possible outcomes increases exponentially with the number of consecutive days
considered. The interest here lies not in predicting if the return will end up as negative
or positive rather in detecting patterns over a wider temporal sequence of returns,
thus improving the detection and formation of gas price trends.

Thus, Equation 8 is performed thrice, and for each set of sequences defined as, Seq;,

the efficiency measure is computed. In efficient market theory, the entropy H shall be

as close to unity, when the n possible outcomes are equally probable, p,yicome = %
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Alternatively, when one outcome occurs at a higher (relative to other outcomes)
probability, a certain pattern exists, and this will attract some key value chain players,
such as investors, to conduct technical analysis, find the pattern, and exploit the
market, thus leading to nonefficiency.

The rolling time window analysis can be used to examine the temporal evolution
of gas market efficiency. Starting with the first 30 observations, the next window is
selected by moving forward across time, removing the first observation, and adding a
new observation to the most recent observation in the previous window, all while
keeping the number of observations in a window to 30. Entropy is computed for each
window.

Furthermore, to cross-validate the results, the authors divided the total number of
windows into two subsets, training and testing (70%/ 30% split). The nonparametric
Kolmogorov Smirnov test is used at each cross-validation step to determine whether
the entropy values on the training and testing samples are identically distributed
(drawn from the same underlying distribution). Then, if the p — value of the test is
greater than 5% (i.e., the H, of the Kolmogorov Smirnov test is reasonably accepted,
implying that both samples are drawn from the same distribution), one can conclude
that there is entropy coherence between the training and testing distributions. In
addition, for more robustness checks, the time dependency factor is relaxed, and a
random selection of windows is chosen and divided into validation and testing
subsets. This logic of testing similarity between random training and testing samples
is applied and performed 100 times, and the proportion/ratio of accepted H, is
calculated across all 100 cross-validation trials. As a result, the higher the ratio, the
more certain and robust our entropy measure.

2.2. Measure of the extremes (Signal 2)

The long-term stability of de-trended prices is best analyzed by studying their
extremes, i.e., the tail of the distribution. The Models most used are extreme value
theory, record theory, long-term growth model, ANOVA, a measure of mean reversion
business cycle, etc. The authors think that the extreme value and record theories are
the most useful because they produce robust results without requiring any knowledge
of the process used to generate the underlying data (which is also unavailable for our
application). By focusing solely on the extreme observations, it is assumed that both
approaches reduce the bias caused by an entire distribution. Furthermore, these
approaches take the effect of heavy tails into account, which is not explicitly
considered in other statistical approaches. The record theory has the advantage of
producing exact (Arnold et al, 1998) and non-asymptotic results, (Lindstrom &
Regland, 2012). Furthermore, the results are distribution-free, so the record theory
does not require the choice of a specific underlying distribution ex ante.

To capture the variability, the model started by calculating the absolute value of
the first difference in the price observations. The number of upper records in the time
series was then computed. The latter is defined as a higher observation (commodity
price) than its proceeding observations, which is equivalent to saying the maximum
observation up to this point. Subsequently, the authors need to determine whether the
underlying observations were independent and identically distributed (i.i.d) and, if
so, select the appropriate record model.

The statistic to test the null hypothesis that the data come from a sequence of i.i.d
random variables is computed, as per Eq. (9).

N = (N; —log T)/,/logT (9)
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where T denotes the length of the time series, and Ny is the number of records. It
has been demonstrated that under the null hypothesis, N converges to a standard
normal distribution denoted by N (0, 1) (Hamie et al., 2018). Then, the null hypothesis
cannot be rejected if N is less than the theoretical (1 — a)** quantile of the standard
normal distribution (« is the -confidence level of the statistic N generally fixed to 5%).
Else, other record models more adapted to non — i.i.d. observations shall be used.
The probability that a certain observation in the future, at a certain time ¢, would
qualify to be a record for the classic i.i. d. model, and is denoted by Eq. (10).

1
p, =1
t 7y

(10)

This implies that in the presence of a commodity daily price time series that
consists of 100 observations (3 months’ interval) and aim to forecast the probability
of having a record on the 1015¢ observation, the probability would be equal to 0.0099.
The probability of a new record in a classic model will thus converge to 0 in the long
term, and records would be concentrated among the first observations. In line with
the reasoning followed in the Shannon signal, a record-based statistical test is
conducted on sliding windows of data with a fixed step. Each window w, where the
i.i.d. assumption is accepted, is labeled by 1 and 0 otherwise. Therefore, a decision
variable similar to the Bernoulli random variable logic is created and expressed in Eq.
(11).

1 ifiid Hypothesis is accepted on window w
D =
W) {0 Otherwise

The windows are then divided into training and testing sets following a cross-
validation process. This is performed a hundred times, and on each of the cross-
validation runs, another statistical nonparametric test is conducted. It checks if the
random variable D has the same behavior on the training and testing window sets (test
to see if the proportion of D = 1 is the same in both sets).

The test is shown in Eq. (12).

(1D

Hy:p, = p, versus Hi:p; # p, (12)

where p; denotes the proportion of D = 1 among the windows in the training
sample, and p, is the proportion of D = 1 among the windows in the testing sample.
The test statistic used to accept or reject the null hypothesis is as follows (See Eq. (13).)

— P1—DP2 (13)

p(l—p)(%+%)

where n; and n, denote the number of windows in the training and testing sets,

respectively, with
— MpP+nzp; (14)
nqi+ny

Under H, one can show that z follows a standard normal distribution. Then, if |z| >
1.96, one may reject Hy with an error risk of 5% (i.e., the behavior of record
observations is not the same in the training and testing samples). Otherwise, when H,
is accepted, there is coherence between the training and testing of the Bernoulli
distributions. This logic of testing similarity between the training and testing samples
is applied on all cross-validation runs. Then, the proportion of accepted H, among the
cross-validation trials is calculated. Hence, a proportion close to 1, implies consistency
in results, thus one can now compute the proportion of accepted i.i. d. behavior (using
the number of records on each window) over all windows.
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2.3. Measurement of predictability using parametric models (Signal 3)

Classical learning methods are employed to estimate the coefficients of a
regression model. These are commonly used to analyze high-frequency time series
data, and the estimation is traditionally based on the optimization of a loss function.
The analysis is then either constrained or governed by statistical assumptions, or
solely based on machine learning and numerical techniques that are nonparametric.
Two broad categories are thus used in the literature of commodity price prediction:
parametric univariate/ multivariate and nonparametric models (Hamie et al., 2020).

The main continuous dataset measured and collected by regulators or competition
authorities worldwide and for any commodity is composed of price time series in most
application cases. As a result, the data are univariate, and the potential applicable
models for price prediction are autoregressive in nature (AR, MA, ARMA, ARIMA,
GARCH, etc.). The energy commodity price time series, in general, exhibit random
work behavior (Narayan & Popp, 2010), making the task of predicting future values
based solely on the series itself complex (Lee & Strazicich, 2003) and uncertain
(Mishra & Smyth, 2016). Commodity price predictability implies that prices should
follow a random walk process and exclude predictability based solely on past price
movements (Bohl et al.,, 2021). To overcome this complexity, the return price series is
considered, and a series of tests on the price returns is conducted.

The plot of the price return prices is visually examined first, and then two statistical
tests [Augmented Dickey Fuller (ADF) and Kwiatkowski Phillips Schmidt Shin (KPSS)]
are employed to check for stationarity. Accordingly, the modeler can choose which of
the autoregressive models to use for return prediction. The authors can now
investigate whether and how well future returns can be predicted based on previously
calculated price returns. The data sample is divided into two subsamples for this
purpose: a training set to train the model, and a testing set to measure the model’s
performance.

2.4. Measurement of predictability using nonparametric models (Signal 4)

Moving into the nonparametric analysis for autoregressive problems, the most
popular model that outperforms almost all other autoregressive models is the long
short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997). This model has a deep
neural network structure with a particular architecture that consider short and long-
term impacts of observations on future value prediction. Like neural networks, and
similar to other deep learning models, the LSTM coefficients are derived based on a
gradient retro propagation process to minimize a given loss function (Pachén-Suescin
etal., 2020). In addition, LSTM is a distribution-free model; this means there is no need
to make any assumption about the probabilistic distribution of the underlying
variables or of the errors.

For computational efficiency-related reasons, it is common in deep learning
models to normalize/standardize underlying input and output variables. The
Appendix (Figure A1) depicts a general representation of the LSTM model’s
architecture. In fact, the return price at time t, X;, is combined with the output at time
t — 1, h;_; (showing the short-term aspect of the model), as well as another input
showing long-term information (price return selected up to a certain fixed window of
time in the past) denoted by C;_;, to generate the model’s output h;. It should be noted
that the input and output are linked via a special nonlinear activation function and
some mathematical operations (e.g, convolution and cross-correlation between
underlying variables).
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The selection of optimal values for the numerous hyperparameters is the LSTM
model’s main complexity (e.g.,, number of layers, number of neurons in each layer, and
activation function, etc.). To address this complexity, some hyperparameters are
computed using a grid search process (Claesen & De Moor, 2015), whereas others are
selected manually and subjectively based on evidence found in literature and the
author’s knowledge and experience. The hyperparameters for the LSTM model are
listed in Table 2.

Table 2. Hyperparameters of the LSTM model

Hyperparameters Selected value
Number of hidden layers Two hidden layers of
the LSTM type
Number of neurons in the first hidden layer 2
Number of neurons in the second hidden layer 1
Optimizer Stochastic gradient
descent
Loss function Mean absolute error
Batch size 40
Epochs 30
Window length 30

A word of caution needs to be mentioned as well, and that is to avoid the risk of
overfitting that is faced in prediction models, more specifically deep machine learning
models, with many tuning hyperparameters features. In fact, in machine learning, a
very complex model can be as inaccurate (overfitting) as an overly simple one
(underfitting). Then the complexity of the architecture of an LSTM model should be
selected in a way to make a tradeoff between the over and underfitting phenomena. In
conclusion, and to be consistent, the model with the highest R2 and lowest MSE on the
testing dataset was chosen. Based on the prediction performance of the optimized
LSTM model, the modeler can analyze the output of the signal, and conclusion
regarding market efficiency can be deduced. Consistent with previous signals, and
using the same dataset, the goal is to investigate the possibility of predicting future
returns using the LSTM model. The data sample is again divided into two subsamples.

2.5. Assigning weights to signals: The analytic hierarchy process

Having established different signals and their measurement, what follows is the
possibility to allocate different weights before aggregating the findings. At this stage,
the regulator or authority has already collected various data from market participants
(mainly commodity prices, and quantities whenever possible). The following step is to
prioritize signal results by allocating the desired weight for each signal analysis.

An accurate approach to quantify and measure these weights is the AHP. Here,
signals are evaluated pairwise and compared and sorted by the degree of relative
importance. AHP is the most frequent method used in multicriteria decision-making
(Saaty, 2004). Signals that are conclusive and justified are based on models with a
minimum level of statistical errors and at the same time point in a clear direction.
Hence, in the AHP matrix such a signal is assigned a higher weight relative to other
signals. It can simply be categorized as more important in terms of information.

Using the AHP method, a pairwise comparison matrix is created, and it shows the
relative importance of the different criteria (signals) concerning each other. The
interpretation ranges from “less important” (0.5), “equally important” (1), “Highly
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important” (2). The elements of the pairwise comparison matrix is denoted by r;;, with
i =1,...,4andj = 1,...,4 which designate the pair of signals that are compared. In
other words, when r;; = x, it means that signal { is x times more important/significant
in concluding the efficiency of the underlying time series than signal j. Linear algebra
and normalization operations are applied to the matrix previously defined to identify

the weight of each criterion. Mathematically, this is done by calculating 7;; = > rijr
k=1"kj
4
and w; = Z"lﬂ, where w;denotes the weight that should be assigned to each of the

four signals. These weights are then normalized and interpreted as a probability

distribution, w; = > Wiw . Thus, after computing the normalized weights, signals that
k=1Wk

are conclusive and justified tend to have stronger weights than those that are not. To
verify whether the results are statistically significant or not, the consistency is
calculated. The statistical test is based on linear algebra operations combining the
matrix and weights computed above. In what follows, the main mathematical
equations used to compute the consistency ratio (CR), which is a comparison between
the consistency of the considered pairwise matrix and a random pairwise matrix, are
defined.
The new pairwise matrix is defined by the transformation expressed in Eq. (15).

Ti*_* = rl] * Wj’ Wlthl =1 B ...,4 and] = 1, ...,4’ (15)

4 Y
Then A; =Zk‘=/v# and A,y =% are defined. A,,,, denotes the highest

L

Eigenvalue of the new pairwise matrix and should be compared with A,,, =
4 (dimension of the matrix) which is the largest Eigenvalue in a perfectly consistent
context (Franek & Kresta, 2014). The Consistency index (CI) is computed and defined

Amax_

as follows: CI = - 4, which is a measure of consistency. Finally, the consistency

ratio (CR) is estimated, and it measures the proportion of inconsistency in the matrix,
i.e.,, how close the model results are to a complete random case; it is also defined as
follows: CR = CI/0.9. If the value of CR is smaller or equal to 10%, the consistency is
acceptable; otherwise, the pairwise comparison matrix (computed in step 1) should
be revised.

2.6. Mutual information

To evaluate the individual contribution of each signal to our proposed
measurement of entropy, the concept of MI is used. Before the reception of any
information through signals, prior entropy #,.;,, is computed under the assumption
of a uniform discrete distribution, see Eq. (16).

P [Ef ficient] = P [non — Ef ficient] = 0.5 (16)
Then

Hprior = —[IP [Ef ficient] x log,IP [Ef ficient] + P [not — Ef ficient] *

log,P [not — Ef ficient]] = 1 (17)

Receiving additional information through signals k = 1,...,4 impacts entropy by
considering conditional probabilities. Hence, the expression for conditional entropy
on signal k becomes:

H, = —[P [Ef ficient|signaly] = log,P [Ef ficient|signal,] + P [not —
Efficient|signal,] * log,P [not — Efficientlsignalk]] (18)
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The aggregated impact of all signals is the posterior entropy #,,sterior, utilizing
the weights determined using the AHP method, is expressed in Eq. (19).

}[poste‘rl’or = t:lWI: * Hy (19)

The impact of information from the received signals in terms of reduced
uncertainty related to stability is measured by the difference in ;. and Hposterior
and is referred to by the previously defined MI. The higher the value of MI, the higher
the value of the information received, relative to complete uncertainty; the new
information received from the signals has thus contributed to uncertainty reduction.

3. Application to the UK wholesale natural gas market

The authors decided to use the UK wholesale natural gas market as a case study to
test the four signals approach, AHP weight attribution, and MI concept. Initially, the
British Gas Corporation, dominated the natural gas market in the UK, purchasing all
indigenous production and securing external supplies. Furthermore, it was a
monopolist in providing the commodity to UK end users. The formulation of upstream
prices was complicated as each contract’s terms were individually negotiated over
several months. Downstream prices were calculated using the weighted average cost
of natural gas plus a margin to cover the remaining costs (transport and distribution).

The Gas Act of 1986 removed the monopoly by allowing third-party access through
its assets (pipelines). Simultaneously, the first natural gas regulator (OFGAS) was
established. During the liberalization process that followed, the most important acts
from Parliament emerged in 1995 and 1996 to fully liberalize the market. It allowed
the establishment of a new licensing system composed of pipeline operators,
wholesalers/shippers, retailers (also known as suppliers) and network codes (Helm
& Jenkinson, 1997). A direct result is the entry of new market participants along the
entire value chain. Thus, the market shares of British Gas fell from a complete
monopoly to less than 50% for each customer type (small/large firms, power stations,
others).

Additional regulatory and infrastructure developments included the merger of
OFGAS into OFGEM, opening of the interconnector (IUK), unidirectional BBL pipelines
between continental Europe and the UK, addition of LNG receiving terminals,
establishment of a virtual hub [national balancing point (NBP)] to allow the system
balancing and as a trading point, and establishment of a virtual hub (NBP) to allow
system balancing and trading.

This directly impacted market liquidity and the fact that UK customers could
choose their supplier regardless of their size. Since its establishment, the NBP has
become a cornerstone for both the British over the counter trades and those on the
exchange (ICE futures). It is now a dynamic and active trading market, with all value
chain participants, including traders, having confidence in buying and selling natural
gas on a standardized basis.

Natural gas accounts for slightly more than one-third of primary energy in the UK.
In 2019, 39.6 billion cubic meters (bcm) of natural gas were produced, including all
onshore and offshore active fields. Over the last decade, the rate of production growth
has been steadily declining. This is due primarily to decreasing production rates in
mature large fields and a slow rate of new discoveries. Natural gas consumption in the
UK (78.8bcm) is a combination of domestic and imported sources. Imports primarily
come from Norway followed by supplies from continental Europe (natural gas
exchange between the island and the continent, such as Russia and the Netherlands,
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or quantities redirected and originally sourced from Norway, and LNG) through the
IUK and BBL pipelines, as well as direct LNG imports. The commodity is traded on the
NBP in a fully liberalized fashion, that is regional and global prices affect overall prices,
but - more importantly - market fundamentals have a higher impact.

The participants in such a trade are classified into several categories: banks,
customers, local producers, traders, OTC brokers, and external producers.
Additionally, other participants are transmission operators (who must trade to
balance the network), investors such as insurance companies, private investors for
speculation, and some local commodity traders. In summary, a value chain participant
would want to either buy or sell natural gas to balance a portfolio, hedge against
market risks, and/or for speculation purposes. The evolution of the maturity and
efficiency of a certain trading hub is based on several elements, among which, the
following can be highlighted:

The number of market participants (in particular active traders), the variety of
traded products available that attract not only physical but also financial participants
(looking for option-traded products), and the churn ratio, defined as the traded
volumes divided by the overall size of the market (Heather, 2010).

Natural gas prices and traded volumes are reported at the broker level, wire
services (Reuters, Bloomberg, etc.), trade press/ national press, regulators, and others
because market transparency is an important feature of commodity trading (Heather,
2012). The results of the evaluation of the maturity and transparency of the NBP
market are encouraging: As of 2018, one can conclude that the NBP market is mature,
transparent, and liquid (Heather, 2019).

In what follows, a brief section summarizing and highlighting the most recent findings
found in the literature regarding the state of the UK naturals gas market is presented to our
readers. In the period between 2005 and 2018, the NBP hub was the dominant hub in
terms of its influence on price changes and spillovers on its neighboring European gas
hubs (Broadstock et al., 2020).

In a more recent period (2011-2020), the British NBP gas market still holds its
leading place, and is considered to be well established, a sign of a liquid functioning
natural gas market, that is subject to few price bubbles, relative to other gas markets
(Austrian VTP gas hub for instance) that are located in the same geographical area and
that uses the same pricing mechanism (Akcora & Kocaaslan, 2023). The main reason
for such as difference is attributed to the hub development level of the latter market
which lags the former (NBP).

Currently, it is observed that the position it used to hold has weakened (Papiez et
al,, 2022). Instead of being the emitter of the shocks, it has become a receiver. The
Dutch TTF and German NCG are now the main transmitters of prices and volatility
shocks, albeit the fact that more recently, the dominance of all three gas hubs have
been weakened, due to recent crisis that affected gas supply and demand. This shiftis
attributed to Brexit in the case of NBP, gas supply crisis in the eastern part of Europe,
decrease dependence on Russian gas and the increase in the supply of LNG.

Although, the liquidity in NBP natural gas futures has witnessed a downward slope
recently, due to the above-mentioned events, however, a reasonable number of future
gas contracts are still being purchased, especially in the winter (for hedging purposes).
In that regards, there is still strong evidence on the validity of the theory of gas storage
in the UK (Martinez & Torrd, 2023). This concept is important to any stakeholder
participant in a market; regulators for instance, need to plan important value chain
facilities installation, such as storage; traders on the other side, need to decide
whether to import LNG, or increase their storage inventory. The latter theory dictates,
that when spot supplies are tight, the volatility of future contracts nearing maturity,
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as well as spot day-ahead gas prices increases, more so to that of the more distant
futures contracts. The theory of gas storage in the UK is proven empirically, as no clear
evidence has been found between future gas price volatility and commodity scarcity,
especially in the case where future contracts are not nearing maturity.

Still in the context of gas futures, European gas market integration as a whole has
been affected (Chen et al, 2022). Analyzing pre-and post-COVID gas prices, the
empirical findings suggest that recent extreme events have led to a supply and demand
imbalance in the market, and consequently European gas market integration has been
negatively impacted.

The level of distress recently witnessed, not only affects the gas supply and demand
imbalances and European gas market integration, but also the electricity market is
affected, as both goods are substitutes and complements (Uribe et al,, 2022). It is
shown that the effect of natural gas prices on the higher quantiles of electricity prices
is much larger, in Finland, Denmark, Germany, than the effect of gas prices in lower
quantile of electricity prices, which implies that the gas price volatility is transmitted
to electricity prices. Thus, further gas market integration is proposed to increase
resilience in European electricity markets, which by itself, and as mentioned
previously, a cause of concern, in times of distress.

As a summary from most recent literature, the NBP, is still considered as a gas hub
benchmark in Europe (despite recent events, such as Brexit and COVID), contributing
to the strong gas market integration, and that the theory of storage in UK is strong. The
above serves as evidence of an efficient and stable market, implying a low level of
uncertainty that could be felt by value chain participants. The authors recognize, the
recent events (Brexit, gas supply shocks in the east of Europe, more reliance on LNG
sport market, COVID).

The flowchart of the methodology is summarized in the below explained four steps,
as well as Figure 1.

Working under the assumption that gas prices are the result of market processes,
the authors believe that there is a wealth of information available that is currently
untapped. The contribution is to investigate the information contained inherent in gas
prices.

Step 1: Define signals relevant to the market being studied. The choice is based on
three main factors: availability/ type of data at hand, literature review, and expert’s
opinion.

To analyze the performance of the four signals defined earlier, one needs to explore
a family of models denoted by F; that can be applied with the aim to extract the
measure of each signal. Subsequently the selection of the most suited model is founded
on mathematical and statistical (e.g., statistical tests) analysis, and this optimal model
is defined by M;. In the UK case study, the following models are used:

— The Shannon entropy signal enables capturing the level of uncertainty
(randomness) of gas prices time series ~ Model M,

— The Record theory will be used to understand the behavior of tail risk, and the
distribution of extreme prices will be evaluated ~ Model M,

—  The predictability of daily gas prices will be evaluated using parametric (~
Model M;) and non-parametric deep learning model ~ Model M, based on the
history of a gas price return time series.

Step one shall be concluded by measuring the following properties of each of the
signal/ model results: first, if the model/signal results are conclusive, and second,
whether the model choice is theoretically justified.

Step 2: Measuring market efficiency specific to each signal
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Step one
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l w Other approaches

Step four

MI,

Figure 1. Methodology flowchart

Using the results obtained at the end of Step 1, one should be able to compute for
each of the signals an efficiency value, defined previously as P [Efficientsignali]

Before collecting the data and undergoing the methodology, the regulator is
indifferent in its judgment about whether the market s efficient or not. The probability
of either states is thus uniformly distributed, equivalent to say that, in the post-
methodology scenario, results will lead to a nonconclusive and non-justified state, i.e.
(C;=0,J; =0), thus indifference in the state of the market, where
P [Efficientsignali] =P [non — Efficientsignali] = (.5, as defined earlier in equation
16. The remaining possible outcomes are defined previously in section 2.

Step 3: Attributing and allocating weights for each signal.

Moving forward in the analysis, a fair question will arise, and it is how to attribute
and allocate weights for each signal. In this manuscript the AHP weight allocation is
chosen and explained in the manuscript. Another possible weight attribution method
is simply equal weights among signals/ models.

Step 4: Compute the measure of information.

Once weights are allocated, the user can now compute the weighted entropy for all
previously defined signals, and use the information collected from Step 3. The
weighted entropy shall be compared with a prior entropy computed under the
assumption of a total lack of information (indifference state). In this final step, the user
will compute a measure of information gained from the analysis, and that contributed
to uncertainty reduction.
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3.1. Data

The authors use the NBP daily time series for natural gas prices, except for signal
four where monthly average prices are used. Figure 2 presents the monthly NBP

wholesale natural gas prices recorded between January 2011 and December 2020
collected from PowerNext.
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Figure 2. Natural gas prices times series in the UK

3.2. Retrieved signals

This section presents the findings for the individual signals’ short- and long-run
price stability, price predictability, and market competitiveness. The signals are then
aggregated, the weights corresponding to the AHP mechanism identified, and the level
of MI within the signals quantified.

3.2.1. Shannon entropy results (Signal 1)

The natural gas price returns are computed and discretized (returns for the
training set are plotted in the Appendix, Figure A2). The descriptive statistics of the
entropy results for the different sequences, while using the sliding windows analysis,
are listed in Table 3. The aim of computing these values is to detect patterns over a

wider temporal sequence of returns, thus improving the detection and formation of
gas price trends.
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Table 3. Entropy results

Oneday (Seq; =1) Twodays (Seq; = 2) Three days (Seq; = 3)

Min; max 0.555;0.999 0.561; 0.998 0.559; 0.996

Mean 0.971 0.960 0.936

Median 0.993 0.975 0.952

Proportion
of Similarity
based on
Kolmogorov
Smirnov
test

98% 97% 94%

The median of the entropies for all sequences is just below unity, implying that the
price returns are more likely to be modeled as random than having a discernible
pattern. Furthermore, even when the minimum value, which is the entropy result for
one specific window (1 out of 2,561), is considered, the lowest reported entropy still
complies with the preceding statement.

There should be equal probabilities for both outcomes in an efficient or weak
market (1-day return sequence; being positive or negative). This will produce entropy
close to 1. Conceptually, and consistent with the efficient market theory, the lower the
number of outcomes (sequences of days), the higher the chance of having equal
probabilities for each outcome. The higher the number of outcomes, the harder it is to
conserve equal probabilities of occurrences per sequence. This is proven in Table 3
results.

If the average entropy across all windows is 0.971 (Seq; = 1), or close to one, one
can say that the signal is conclusive (and it announces a strong uncertain behavior of
the returns). In other words, it is difficult to conceptualize information that can be
used by gas supply chain participants to exploit the market.

The results of random seeding cross-validation, which is used for additional
robustness checks and to loosen the time dependency factor, are also reported in same
Table 3. It is observed that in 98% of the cross-validation cases, the Kolmogorov-
Smirnov test accepts the similarity between the training and testing distributions.
Then, it can be inferred that the entropy signal is coherent, and robust and that its use
is justified. It is thus hardly possible to conceptually extract information that gas
supply chain participants can use to exploit the market. Hence, the observed
uncertainty in the underlying data is maximal, and the selected natural gas market can
be considered a market with high efficiency.

3.2.2. Extreme results (Signal 2)

Based on record theory, the authors start with the cross-validation process
described in Section 3.2.1. Monthly widows (30 days) of data are considered with a 1-
day sliding step. The number of runs for cross-validation is considered 100. The
comparison of the proportion test above accepts proportions equality between the
training and testing decision variable distributions in 94% of the runs. Then, can say
that the use of the record signal is justified and coherent. Finally, by considering all the
data (all windows), the proportion of windows where the i.i.d. behavior (classical
model) of the underlying distribution is accepted is 92.7% which is close to 1 (C, =
1). From that, it is inferred that the record signal is conclusive and that prices are
efficient in terms of extreme values. The model is assertive, and the probability of
witnessing a record or shock in the long run is low, which is additional evidence of the
efficiency of the considered natural gas market.
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3.2.3. Predictability using parametric models (Signal 3)

A visual inspection of the price returns plot suggests a stationary process with
some extreme values, mainly at the beginning of the observed period. Both the ADF
and KPSS results confirm the stationarity of the time series for a lag order of up to 15
and 9 observations, respectively.

As a result, the ARMA model will be used to forecast future returns. The results of
the partial and autocorrelation functions indicate three lags are significant in both
cases. An ARMA (3,3) with a maximum absolute value of the AIC of 14081.31 extracts
the most information. The results are presented in the Appendix (Figures A3 and A4).

The model’s coefficient of determination is near 0, suggesting that the returns are
nonpredictable. Although the optimal model is used, in terms of statistical theory and
coherence, the results fail to make an inference for the price returns. Thus, this signal
shows that short-term prices are nonpredictable based on their returns, which
induces weak-market efficiency for predicting future prices conceptually. The return
prediction results are found in the Appendix (Figure A6).

As a summary the parametric results are considered robust and justified due to the
following reasons: The stationarity, ACF and PACF tests, and other model
performance-related tests are conducted before making a final decision about the
optimal model to be used. This means that the choice of model is statistically justified,
and even when accounting for the best statistical model for such data, the results
indicate that the prices are unpredictable. The results are thus robust.

3.2.4. Predictability using nonparametric models (Signal 4)

Similar to the parametric models, the coefficient of determination, computed on
the validation set, of the LSTM model is near 0, suggesting that one cannot rely on this
model to make a prediction. Then, it is another sign that the returns of the considered
market are unpredictable, which indicates the market efficiency. The return prediction
results for the nonparametric model are found in the Appendix (Figure A5).

For the nonparametric deep model, several measures were taken to decide about
the optimal architecture and hyperparameters values to be used and avoid the over-
and underfitting phenomena using multiple techniques. However, the authors prefer
to label these signal results as non-justified as it is difficult to interpret deep learning
black-box models.

However, both parametric and nonparametric models are also considered
conclusive regarding the efficiency of the considered market. In fact, for both models,
the measure of performance applied on the testing data does not have the ability to
predict the considered time series, which is a sign of weak-efficient market.

3.3. Aggregating individual signals and value of Ml

The findings of the signal analysis and their interpretation are presented in Table
4. The first row corresponds to the prior probability and is interpreted as follows:
before receiving any information, the regulator is indifferent in its judgment about
whether the market is efficient or not. The probability of either state is thus uniformly
distributed. As a result, these assumptions lead to nonconclusive and non-justified
state.
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Table 4. Signal analysis results

. - P [non Interpretation
Signal P [Ef ficient] _ Efficient]
Non-conclusive,
Porior 0.5 0.5 non-justified
Measure of .
Conclusive,
Shannon entropy 1 0 ustified
(S1) :
Measure of 1 0 Conclusive,
extremes (S2) justified
Measure of
predictability, 1 0 Conclusive,
using parametric justified
models (S3)
Measure of
predlct.ablhty, Conclusive, non-
using 0.75 0.25 .
. justified
nonparametric

models (S4)

The results indicate show that the matrix is reasonably consistent (CR = 0.017 <
0.1), and the process of decision-making using AHP generated weights is valid. Also,
the weights for signals 1 and 2 should be highest when extracting the value of
information contained in the data. The pairwise matrix results for the four signals are
presented in Table 5.

Table 5. AHP weight matrix

Signals S; S, S3 S, Weights w;in %

S, 1 1 1 2 28.57
S, 1 1 1 2 28.57
S, 1 1 1 2 28.57
S, 05 05 05 1 14.29

The quantitative tools, conceptually deal with numbers and statistics, and this is
the aim of the developed instrument. The test hypothesis for robustness and the result
conclusiveness are all built, as quantitative measures by design. When one lack the
necessary means to prove either (conclusiveness or justification and robustness), then
the signal cannot be trusted in the same way as another signal that is measured,
conclusive, and robust enough, and thus, it can be inferred that the analysis can be
generalized in the latter case.

It is worth mentioning that the quantitatively justified models, such as signals 1, 2
and 3, will have a high importance score relative to other signals that are either
unjustified, or not directly justified. This is the case of the signal results, with a process
of justification composed of several steps, some of which are qualitative and others
quantitative. This is the case of predictability signals, whereby several tests (steps) are
conducted to justify and validate the results. The MI analysis results are presented in
Table 6.
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Table 6. Comparison between AHP and equal weight MI results

Signals AHP weights %
Prior Entropy (no 1
information)
Posterior Entropy 0.1352
Mutual Information 86.4787%

The analysis of the four proposed signals, has contributed to the gain of
information, thus reducing uncertainty when assessing market effectiveness by a
value of 86.5%. This reduction is measured relative to the pre-signal analysis situation,
where no price data were available and analyzed using the proposed tool. In addition,
all signal results point to the weak-form efficiency of gas prices reported in the UK
natural gas wholesale market, in the period of 2011- to the end of 2020.

4. Discussion and conclusion

MI conceptually describes how different signal results contribute to the reduction
of uncertainty when assessing market efficiency. Our analysis began with the selection
of models based on data-related assumptions, mathematical theory, and the type of
signal that the authors find useful for the measurement. Such models can always be
improved, and larger dataset could produce different results. To have a solid
interpretation that leads to policy recommendations, the results must be as conclusive
and justified as possible. Careful application of the proposed tool will feed the
regulator with information about the state of the market. The analysis of the four
proposed signals, has contributed to the gain of information, thus reducing
uncertainty when assessing UK gas market effectiveness by a value of 86.5%. In fact,
and with minimal access to data, the UK natural gas hub is proved to be in a weak form
efficiency, a sign of a functional market where prices are transparent and reflect
available information for all stakeholders.

To the best of the knowledge of the authors, it is the first time that a multitude of
mathematical models are used, with the aim to refute (or not) a hypothesis regarding
the state of a commodity market. The main advantage can cover several statistical and
mathematical modeling approaches before inferring about the global state of the
commodity market. Additionally, the analysis is done, based on a limited available
dataset, and using classical models (low-level of computational complexity, i.e., very
few model-specific input assumptions are needed, such as, but not limited to, hyper-
parameters, assumptions about random variable distribution, etc.). Thus, one can
make a consistent and accurate inference about the state of the commodity market.
Moreover, the AHP technique is applied with a minimal subjective dimension. In fact,
all the weights are computed, using a defined scientific approach, thus limiting
subjectivity.

Future research should investigate broadening the concept and dealing with
conclusive and non-justified signals. The limitation of this study is identifying an
appropriate model to measure a market signal, leading to conclusive, but unjustifiable
(in terms of closed mathematical and statistical arguments) results. The latter
complicates the task of assigning a probability measure to the signal; however,
dropping such a signal might lead to a false interpretation of the status of the market,
making it difficult for the user to drop or retain the signal in the first place, and assign
the probability in the second step.
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