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Original scientific paper
Abstract: The overall purpose of this paper is to define a new metric on the
spreadability of a disease. Herein, we define a variant of the well-known
graph-theoretic burning number (BN) metric that we coin the contagion
number (CN). We aver that the CN is a better metric to model disease spread
than the BN as the CN concentrates on first time infections. This is important
because the Centers for Disease Control and Prevention report that COVID-19
reinfections are rare. This paper delineates a novel methodology to solve for
the CN of any tree, in polynomial time, which addresses how fast a disease
could spread (i.e, a worst-cast analysis). We then employ Monte Carlo
simulation to determine the average contagion number (ACN) (i.e., a most-
likely analysis) of how fast a disease would spread. The latter is analyzed on
scale-free graphs, which are specifically designed to model human social
networks (sociograms). We test our method on some randomly generated
scale-free graphs and our findings indicate the CN to be a robust, tractable
(the BN is NP-hard even for a tree), and effective disease spread metric for
decision makers. The contributions herein advance disease spread
understanding and reveal the importance of the underlying network structure.
Understanding disease spreadability informs public policy and the associated
managerial allocation decisions.

Key words: Disease spread, graph theory, burning number, contagion
number, COVID-19.

1. Introduction

In early 2020, Earth was hit with a pandemic the likes of which it had not seen in
100 years. According to the World Health Organization (WHO), a pandemic is the
worldwide spread of a new disease. This disease we speak of is none other than
COVID-19, which stands for coronavirus disease of 2019, and is the illness caused by
the SARS-CoV2 virus originally recognized as an “outbreak of pneumonia of unknown
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etiology” in Wuhan City, Hubei Province, China, on December 31, 2019. (Centers for
Disease Control and Prevention, 2021a., p. 3). COVID-19 exposed our global
operational fragility, as could be seen in disruptions of necessities such as food,
personal products, and medical supplies. Supply chain and operations personnel were
asked to pivot on a dime and public policymakers faced tough decisions, in the quest
to maintain social welfare.

An understanding of disease spread can bring clarity for decision makers
(Keskinocak, 2021). For example, at one point allocating ventilators was reduced to
deciding who gets to live and who gets to die (Medical News Today, April 8, 2020).
“Allocations that maximize health benefits are rarely equitable, while equitable
allocations may be significantly non-optimal,”(Duijzer et al., 2018, p.143), thus
capturing the serious nature of exactly how scarce supplies should be allocated. When
considering that, “...the primary reliance on the innovation capabilities of the
developed world during pandemics does not present an optimal way forward.” (Adbi
et al, 2019, p. 826), as a means of increasing supply, it can clearly be seen how
understanding disease spread can prove beneficial.

Herein, we propose a related metric to the burning number of a graph, which we
name the contagion number (CN), as a better metric for forecasting disease spread.
The burning number is a well-known means of measuring the speed of contagion of a
graph (Bonato et al, 2016), with contagion defined as a disease spread by close
contact. Related to the burning number, our contagion number is defined herein as the
smallest number of iterations of the burning number process that is required to infect
a given sociogram of people or collection of networked communities. The last step in
the burning number process is always to burn a single node, even if every node has
already been burned (i.e., the burning number does not constrain a network node from
getting the same disease/same variant more than once). The contagion number
disregards this, and similar parts of the burning number, because we are concerned
only about first-time infections, given the Centers for Disease Control and Prevention
(CDC) finding that COVID-19 reinfections are “rare” despite making headlines, thus
making our model appropriate for the study of COVID-19 and similar contagions
(Centers for Disease Control and Prevention, 2021b).

Our contribution is mostly in answering the question of forecasting how fast a
disease can spread (the inherent risk), but it also extends to the practical application
of how best to strategically allocate limited resources (i.e.,, recommends dispensing
strategies that can mitigate the impact of epidemic outbreak, therefore alleviate
suffering). In particular, our contribution are as follows:

1. We demonstrate that a variant of the NP-hard burning number, coined herein
as the contagion number, is a robust metric for forecasting disease spread. We
then delineate a new methodology that solves for the contagion number in
polynomial time, for any tree.

2. We also simulate for values of the ACN for random trees, as well as for scale-
free graphs of size n with varying edge densities, because scale-free graphs are
used to simulate social networks, containing preferential attachment
(Barabasi & Albert, 1999).

Taken together, decision makers can use the CN for worst case scenarios and the
ACN for most-likely scenarios of gauging disease spreadability. The result are two
indices that decision makers can gauge risk and further dialogue about public policies
meant to uphold social welfare objectives in times of pandemic.

Our study is organized as follows. We begin with a brief literature review focused
on the most prolific contemporary approach to modeling disease spread followed
under COVID-19, before moving on to recent efforts with respect to burning number
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research. This is followed by a description of our proposed method, a section with an
annotated example for the contagion number, and our simulation results for the ACN.
We conclude with recommendations to shape public policy and guide managerial
decisions. Some open avenues for future research are also presented.

The authors entered COVID-19 and this research endeavor with both motivation
and trepidation. We start with this quote in the foreword of the book Moonshot
written by the Pfizer Chairman and CEO, Dr. Albert Bourla:

“The largest lessons learned from tackling these diseases is the
importance of partnership and collaboration across sectors to drive
global public health for all, and most important to never give up.”

President Jimmy Carter (Carter, 2022)

2. Literature Review

In this section, we stress the importance of good, vibrant, and robust disease
modeling techniques such as the well-known SIR model. We then focus on the graph
theoretic research on the BN of a graph, as an alternate means of studying disease
spread. We conclude the literature review by providing a backdrop to the CN, via the
literature on the BN.

2.1. Literature Review: Importance of good techniques and contemporary
approaches

Pandemics are borderless and non-discriminatory, hence, the need for robust
models that can provide decision maker insight for needed solutions and strategies,
when managing societies stricken with disease spread. In this light, the Centers for
Disease Control and Prevention issues what is known as the ensemble forecast, with
input from a multitude of diverse sources. At the time of the writing of this paper, there
are over 30 qualified entities who all contribute to our understanding of forecasted
COVID-19 cases. (GitHub, 2021). There are also models for cases (Centers for Disease
Control and Prevention, 2021c) as well as models for forecasting deaths (Centers for
Disease Control and Prevention, 2021d).

The most well-known disease spread model, the SIR model, is the forecasting
model that is most used to study the spread of COVID-19 (Liu et al., 2019). Vastly
different than the graph-theoretic approach herein, the SIR model is a compartmental
model in which individuals are either susceptible (S), infected (I), or recovered (R).
Extensions to the basic SIR model include Markovian transition models (Chen et al.,
2020), models that incorporate those that fail to recover (D), and models that
incorporate those that are simply exposed (E). For a thorough discussion of the
difficulty of utilizing the SIR model, as well as exposure to other viable models, we
refer the reader to “Why Modeling the Spread of COVID-19 is so Damn Hard” (Hutson,
2020).

To wit, no known literature is similar to our model in approach or outcome: A new
polynomial time metric based on the NP-hard BN of a graph.

2.2. Literature Review: Burning number

A relatively new parameter called the burning number of a graph, b(G), has been
used to gauge the speed at which information, alarms, or contagions can cover, alert,
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or contaminate an entire network, respectively, with the lower the burning number,
the faster the spread (Bonato et al., 2016). Noting the problem is NP-hard, Simon et al.
(2019) developed an algorithm that identifies good but admittedly not optimal nodes
to burn, and this serves as a call for more research, as recent research has addressed
different approaches across networks having varied characteristics but is far from
comprehensive.

The BN is also a good means of understanding spread across a social network
(Bessy et al., 2017; Bonato et al,, 2016). Closely related to the burning number, the
contamination number, gives additional insight into networks to which graph theory
has applicability. To wit, Bonato et al. (2021) published the best known upper bound
for the burning number of a graph:

where [x] is the greatest integer function (ceiling) of x and n is the cardinality of
the node set in the graph, G.

Given these efforts, it becomes clear that the burning number is a new and
emerging area of study. We also know that it is a sound metric for how fast diseases
can spread, an able proxy for the efficacy of social distancing, and that the burning
number problem is NP-hard, even for trees.

Hence, our effort delineates a new but related, polynomial time metric for
measuring how fast a disease can spread, that we coin the contagion number. The
difference between the burning number and the contagion number is that the
contagion number is only interested in the number of steps, days, or transitions it
takes to infect (burn) the entire network, as opposed to the burning number, which
counts steps, days, or transitions, irrespective of whether the nodes involved have
already been infected (burned). Therefore, we note here that the contagion number
(CN), as defined, is also a lower bound to the burning number.

Moreover, since viruses are not “smart” (i.e, they do not choose the optimal
locations needed to infect a particular sociogram of people or networked communities
as fast as possible), we also present the ACN as a metric for measuring how fast a
disease will spread. Essentially, the CN is about what a disease could do (i.e., a worst-
case scenario) whereas the ACN is about what a disease would do (i.e., a most-likely
scenario). Itis thought that both metrics could be used by public policy and managerial
decision makers.

3. Methodology

In this section we formally define the BN, as well as our proposed CN. We provide
a step-by-step delineation of our new method for solving for the CN. Our proposed
new methodology solves for the CN in polynomial time, for trees. We then employ a
Python® code (version 3.6 and higher) Monte Carlo simulation for the ACN of a graph,
to provide realistic estimates of how fast a disease would propagate across a social
network. To aid in this section we first provide some nomenclature in Table 1.
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Table 1. Nomenclature

Term Definition

n The number of nodes in a graph; the order
DEG(n) The degree of node n; how many incident
CEIL denoted by [x] Greatest integer function

FLOOR denoted by | x| Smallest integer function

Eccentricity; e(node) Distance between two nodes with unity edge
Radius of a tree/graph The minimum eccentricity of the tree/graph

Diameter of a tree/graph  The maximum eccentricity of the tree/graph

For a more thorough background on graph theory and its basic nomenclature, the
reader is referred to the classic text by West (2001). For a brief synopsis specifically
on the diameter, radius, and eccentricity of a graph the reader is referred to Weisstein
(2022).

3.1. Methodology: Burning number definition

The generally accepted method to burn a graph starts with burning a single node
at time t=0. Then one indexes the clock by one unit (e.g., a day, an hour, or a plane flight
by the infected person) and burns another node at time t=1, while, simultaneously, the
original fire set at time t=0 spreads to and burns all its the nearest-neighbor nodes.
Again, one indexes the clock by one unit and burns another node at time t=2, with all
the burning nodes spreading to and burning all their nearest-neighbor nodes (i.e.,
nodes burned at time t=1 have now burned all their nearest neighbors, as well as the
second echelon nearest neighbors of the node burned at time t=0).

This process of lighting a fire continues, ad nauseam, until all of nodes in the graph
are burned. The last step in this process is to locate a fire of radius zero and declare
the cardinality of the burning node sequence as a feasible solution to the burning
number. The problem of finding the smallest such cardinality in this manner is
obviously sequence dependent and is easily shown to be NP-hard. Except in very rare
instantiations, which are known as perfect burns, and defined as a situation in which
no node is burned more than once during the process of burning a graph, the burning
number process will burn several nodes more than once (aka overburning or
charring).

3.2. Methodology: Contagion number definition

The contagion number, on the other hand, is the smallest number of infections that
need to be located (as opposed to fires to be set) on a graph, so that the whole graph
becomes infected, without infecting the same node more than once. Whereas the
burning number is about the complete set of burns of different sizes, the contagion
number ignores iterations of the process that simply infect the same node more than
once.

3.2.1. Methodology: Contagion number definition: Formal delineation

More formally, let G be a connected graph and (vy,..., vj) be a sequence of nodes in
V(G), which will be called hubs and colored red, all other nodes are non-hubs and
colored white. For each integeri= (1, 2, ..., j), apply the following rules in order:

1. Any non-hub that is currently colored red colors each of its white
neighbors red.
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2. After the non-hubs have colored their respective white neighbors red,
we next allow the hub vi to color its white neighbors red.

If all of V(G) is colored red after j time steps have been performed, then the
sequence (v1,.., vj) is called a contagion sequence of G. The length of the shortest
contagion sequence in G is the contagion number of G.

3.3. Methodology: New method for the contagion number

Let G(n, e) be an undirected graph with n nodes and e edges. Let b(G) be the
burning number of the graph G. The burning numbers of all the possible spanning trees
of a graph, is equal to or greater than the burning number of the original graph (Bonato
etal, 2016). At one extreme, the burning number of any completely connected graph
(i.e., everyone on the planet personally interacts with everyone else) is 2. However, at
the other end, no one interacts with anyone else (i.e.,, we are all perfectly socially
distanced) such that no burning or infection spread takes place. Obviously, human
interactions fall somewhere in between. Nonetheless, the b(G) on a generalized graph
can be trivial, whereas, except for paths, the b(G) for a tree is always NP-hard. In other
words, solving for the b(G) on a tree is as hard as solving for b(G) on a graph. Taken in
concert, this means we can focus our efforts on spanning trees for a particular area or
region, as the burning number for spanning trees is always an upper bound for
the/any underlying graph.

Let T(n, e) be an arbitrary undirected tree. (It is important to bear in mind that
previous attempts in top mathematics journals to solve for the b(T) have all noted that
the problem is NP-hard (Bessy et al.,, 2017; Bessy et al., 2018; Liu et al.,, 2019). The
methodology in all these previous attempts starts with setting a fire at time t=0 at an
arbitrary node. This fire would then grow, at every iteration, into a sub-tree of radius
k at time k (where k is just a possible burning number of the tree, but not necessarily
the smallest such one). The second fire set at time t=1, would also grow in a
catawampus manner, to a sub-tree of radius k-1 on day k, and the last fire set at time
t=k at yet another node, will simply be a sub-tree of radius zero (i.e., a single node) at
time k. This is the accepted approach in the literature to solving for the burning
number. The problem is in finding the smallest such number of iterations.

We posit that there is an issue with using this accepted approach to find the
smallest number of iterations. The problem is not that fires grow; that is what fires do.
The problem is that, at every iteration, they grow with respect to their original
location. Thus, all of the previous attempts in the literature were essentially trying to
solve a complex, sequence-dependent dynamic location problem: Locate each of the
fires that will all end up being different sizes and different nodal cardinalities,
sequentially, to determine the minimum number of such fires needed to burn the
entire network.

So, we began to study our research question as a location problem: A generalized
set covering location problem!, to be exact, except that the radii of all the individual
covers are of different sizes. It should be noted here that the generalized set cover
location problem on a graph is NP-complete (Garey & Johnson, 1979, p. 222). However,
the generalized set cover location problem on a tree is known to be exceedingly
simple: Itis solved to optimality with the greedy algorithm. Our location problem then
became how to handle the varying radii of all the covers.

! The set cover location problem was first described by (ReVelle et al., 1976). Literature surveys in location
analysis in general include Brandeau & Chiu, 1989, Hale & Moberg, 2003, Drezner & Hamacher, 2002, Nickel &
Albandoz, 2005, and the award winning Laporte et al., 2019. Surveys specific to covering location problems can
be found in Schilling et al. (1993) and Snyder (2015).
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3.3.1. Methodology: New method for the contagion number: Key finding

We then noticed that in all the previous instantiations of the BN problem in the
literature, once a tree (or a graph, for that matter) was burned completely, it was
always covered with a sequential set of burns, all of which were 1-center trees of radii
{k, k-1, k-2,..,, 2, 1, 0}. Put another way, every feasible burning number solution was
always covered with a set of burns of radii {0, 1, 2,..,, k-2, k-1, k}. This is key.

This led to our idea of approaching the entire problem in a backwards manner:
Locate and burn what was in the prescribed and accepted method in the literature as
the last burn (a 1-center tree of radius 0; a single node) first. It is then fixed and does
not grow. Simply put, locate a single node, and burn it. Then locate what was the
second to last burn (a 1-center tree of radius 1) second. It is also fixed and does not
grow. Locate a very small tree and burn it. Then locate what was the third to last burn
(a 1-center tree of radius 2) third. It is also fixed and does not grow. Locate a slightly
larger tree and burn it. Continue this process in an orderly manner, until all the nodes
are burned. This backwards approach is obviously simpler.

3.4. Methodology: A small annotated example

In this section, we delineate through the use of an example of our new method, to
solve for the CN of a tree. This example, albeit small, clearly shows the efficacy of our
proposed new method. We first note that the burning number on a path with n nodes
is trivial and is strictly equal to [vn]. We further note that the contagion number on a
path with n nodes is less than or equal to |Vn|. We also note that the
burning/contagion numbers of any tree with n nodes is greater than or equal to the
burning/contagion numbers for a generalized graph with n nodes. Hence, it is the tree
that offers the most elusive, largest, and non-trivial problem, with n nodes.

The method prescribed here is to iteratively choose the nodal center location of a
fixed radius infection (a set cover of radius k) such that the sum of the eccentricities of
all the remaining non-leaves (all nodes of DEG = 2 or higher) is minimized. In other
words, after the current fixed radius set cover is located, it leaves behind a tree that
has the smallest total distance sum, to the remaining tree’s center, for every node of
degree 2 or greater. Next, the infected nodes are removed from further consideration,
the fixed radius infection k is increased by one, and the process is repeated until all
nodes are infected.

For expository purposes, and without loss of generality, we draw the tree of
interest as shown in Figure 3, with the 1-node or 2-node center at the bottom and
progressive “levels” growing up and numbered accordingly. In Figure 3, the tree has a
diameter of 15 and, hence, is 2-node center (all odd diameter trees have a 2-node
center, while all even diameter trees have a 1-node center). Also, we label all the
“major branches” of the tree. This choice of these labels are completely arbitrary and
mostly for ease of exposition. In Figure 3, we chose A through G to be our major
branches. We further note that branches with peripheral points, A, B, and C, are on the
other side of the 2-node center than branches D and E.

The “backwards” process (and, if necessary, at the beginning of every iteration) is
started by identifying the bestlocation for the zero-radius infection: a single node. The
CN, as it is defined, rarely needs the single node infection to define it. Thus, before
proceeding with the annotated example, this point is demonstrated. For example, on
paths where the burning number is at its greatest, per the cardinality of the node set,
from a path of one node (a single node) up to and including a path of one thousand
nodes, only 3.1% of them (n=1, 4, 9, 16, 25, ..., 900, 961) need to use the single node
burn to ascertain the burning number. As noted above, these 3.1% are known as

7



The contagion number of a graph. How fast can a disease spread?

perfect burns, as no node is burned more than once. A perfect burn for the P9 path is
depicted in Figure 1 below. It has a burning number of 3 and a contagion number of 3.

Single node burn  Radius 1 burn Radius 2 burn

1, Il

Figure 1. A path of length nine showing the three burns

A path of length 8, depicted in Figure 2 below, also has a burning number of 3. It
has one overburned node. However, a path of length 8 has a contagion number of 2, as
the contagion number does not include the unnecessary single node burn, given its
focus on only first-time infections. Moreover, a path of length 5 (not pictured) has a
burning number of 3, but a contagion number of 1. All that is needed is a radius 2 burn
and does not include the radius 1 burn or the single node burn used in the burning
number calculation.

Radius 1 burn Single nodeburn  godiic 7 burn

eooeidee

Figure 2. A path of length eight showing the three burns and an overburn

Note that if the locations of the radius 1 burn and the radius 2 burn are as shown
in Figure 3 (i.e., they are efficient, per se) then the location of the single node burn is
moot.

In terms of the burning number/contagion number of a tree, without at least one
of these conditions, this means that the single node burn location is of no consequence
as it will be overburned, regardless. In such cases, the CN will be at least one less than
the burning number.

Hence, there is a special proviso for the single node infection in our methodology.
In general, the location rule herein is to choose the current iteration’s infection center
node, as the node that minimizes the sum total of the eccentricities of all the remaining
non-leaves once the current iteration is burned away. For the single node infection to
be of any consequence, that means at every iteration, there would need to exist a
peripheral point that is by itself, per se. This is to say, a leaf with its neighbor
node/support node having a degree of 2. If such a leaf does not exist, we skip the single
node infection for the current iteration and move on to the next infection radius. In
Figure 3, at the first iteration, node A8 is a peripheral leaf that is by itself (its neighbor
in level 7 has degree 2), so we infect it and continue. After infecting A8, we note that
the tree’s 2-node center location has not changed, and we now look at all remaining
uninfected nodes. We choose B7 as it minimizes the sum total of the remaining non-
leaves’ eccentricities. After infecting B7 and its neighbors, we again note that the tree’s
2-node center location has not changed, and we now look at all remaining uninfected
nodes. We subsequently choose D6 as it minimizes the sum total of the eccentricities
of the remaining non-leaves.
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Figure 3. Original tree showing first four burns

We note here that there can be ties in this process and it is in this choice that the
problem remains NP-hard (otherwise P = NP). Thus, our methodology does not solve
an NP-hard problem: the burning number on a tree. It solves for a proxy of the burning
number that we coin the contagion number, in a deterministic fashion, shedding light
on disease spread for the benefit of managerial and public policy decision makers.

After infecting D6 and all nodes within a radius of 2, we again note that the tree’s
2-node center location has not changed, and we now look at each remaining uninfected
node. We choose E5 as it, again, minimizes the sum total of the eccentricities of the
remaining non-leaves.

After these four iterations, the diameter and, hence, the center of the tree have both
changed. The remaining tree is shown in Figure 4 below. It now has a diameter of 14
and, hence, is now a 1-center tree with peripheral points still at level 8, on major
branches C and F. It also has what we term here as a “ghost node” at E3, which is
needed for our new method, going forward. To keep the tree connected, previously
infected “ghost” node E3 and its incident edges are designated by dotted lines as
shown in Figure 4 below.
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Figure 4. Remaining tree after four iterations

We again investigate all the remaining uninfected nodes. We choose F4, as it
minimizes the sum of all the eccentricities of the remaining non-leaves in the tree that
remains, which, since the diameter and center have changed again, is depicted in
Figure 5 below.

We notice that the remaining tree in Figure 5 now has a diameter of 13, so it is once
again a 2-node center tree. We take special note that the branches on either side of the
2-node center have realigned. We are now looking at all remaining unburnt nodes on
this tree.
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Figure 5. Remaining tree after five iterations

We choose C2 (inside the square box in Figure 5) as it minimizes the sum of
eccentricities of all the non-leaves that remain after we infect all the nodes. We are
now left with a shell of our original tree, and it is depicted in Figure 6 below.

The remaining tree is now of diameter 12, so it is a 1-node center tree. Since we
now need to infect a 1-node center tree of radius k = 6, as per the pseudo code
delineated in the next section, satisfies one of the stopping conditions, we simply
choose the 1-node center and infect all the remaining uninfected nodes. So, after seven
iterations (k=0, 1, 2, 3, 4, 5, and 6), we have infected the entire tree and, in this case,
the contagion number is 7.

It should be pointed out here that in the hundreds of trial efforts by the authors,
utilizing this method on arbitrary trees, the BN was also found correctly via our new
method, in most of them. This is admittedly anecdotal, but it is hoped that a future
refinement of our methodology, could result in BN solutions for at least some classes
of trees. For now, we simply postulate that determining the CN via our “backwards”
method results in polynomial solution times. Utilizing the fixed radii of the set covers,
approaching the problem backwards, and the “leveled configuration” of the tree in our
example, all provides much needed insight and direction, for decision makers
navigating complex situation such as those brought on by disease spread.

11
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Figure 6. Remaining tree after six iterations

3.5. Methodology: Pseudo code algorithm

Pseudo code is provided to additionally demonstrate that the method prescribed
here is to iteratively choose the nodal center location of a fixed radius infection (a set
cover of radius k), such that the sum of the eccentricities of all the remaining non-
leaves (all nodes of DEG = 2 or higher) is minimized. A tree that has the smallest total
distance sum to the remaining tree’s center, for every node of degree 2 or greater,
remains, and the methodology continues by removing the infected nodes from further
consideration, increasing the fixed radius infection k by one, and repeating this
process until all nodes are infected.

This process, admittedly, requires some substantial calculations along the way.
However, at worst via brute force, this would require calculating the eccentricity for
all of the non-leaves for all of the possible burn center locations for each of the k
iterations. This first part of the brute force process is no larger than n — 2 non-leaves

by no larger than n — 2 possible burn centers. Since k is approximately equal to Vn,
the computational complexity of our proposed method is then approximately equal to
(MM)(Vn) = n2s.

Our proposed method further decreases this computational complexity by
reducing the set of possible current iteration burn locations, to only those nodes on a
diameter that are also a distance of k (the current iteration index) from at least one
peripheral point. This reduces the feasible solution space significantly.

A trivial upper bound to the BN of a tree is the radius plus the cardinality of the
centers (1 or 2). The pseudo code delineated below will terminate in no more than this

12
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upper bound number of iterations. Each of the steps involved is deterministic and
computationally polynomial with respect to n. Hence, our entire process is polynomial
with respect to n.

Our proposed methodology is shown below in pseudo-code form. There is a flag, z,
and an iteration counter, k, embedded in the code. The flag is for placing the zero
radius single node if and only if a particular iteration has a support vertex (a node next
to a peripheral leaf) has degree 2. The counter is for tracking the iterations and has
three distinct and complete stopping conditions.

Pseudo-code to find the contagion number of a tree

Set Zero Radius z = 1
. Set Infection Radius £ =0
3. Ifany peripheral leaf has a support vertex that has DEG = 2 then infect any one such
peripheral leaf with a zero radius infection and set z=0 and set k =k + 1
4. Setk=k+1
a. If the current iteration diameter is even and £ is greater than or equal to the
current iteration radius, then STOP: £ is the contagion number
b.  Elseif the current iteration diameter is odd and £ is strictly greater than the
current iteration radius, then STOP: £ is the contagion number
c. Endif
5. For every unburnt node, determine if it were to be the burn center of the current
iteration the sum of the eccentricities of all would be remaining nodes of DEG =2 or
higher.
6. Infect the node with the minimum sum per above and every node within the &-
neighborhood of this node. Break ties arbitrarily.
7. If all nodes are infected, then STOP: £ is the contagion number.
8. Ifremaining tree is cut and has become unconnected by the current infection
iteration, then keep uninfected nodes attached with infected edges and infected nodes.
. Determine the remaining tree’s center(s), diameters, radius, and peripheral pendants.
10. Ifz=1 then goto 3 else goto 4

o =

3.6. Methodology: A large computer-generated example

To demonstrate our methodology’s efficacy on larger trees, we programmed a
script for our pseudo code in Python®©. For 10 random trees of 1000 nodes, the
algorithm found a CN as small as 19 and as large as 28. This comports with the
theoretically largest burning number on a tree with 1000 nodes which is 32 for a path
on 1000 nodes. Our generalized Python®© code for both the CN (CN) of a tree and the
ACN of a graph is located in Appendix A.

3.7. Methodology: Simulations of the average contagion number

Most of the focus of this paper thus far has been on the worst-case scenario (i.e.,
how fast a disease could spread). It resulted in a metric that is a variant to the well-
known NP-hard burning number, that via the utilized “backwards” methodology, is
always solvable in polynomial time. In this section, the focus now shifts to delineating
a most-likely scenario (i.e, how fast a disease would spread). This is important
because diseases aren’t smart and they don’t pick the optimum locations to infect an
entire network as fast as possible. Diseases are, however, opportunistic and spread
through human social networks. This section thus delineates, with just a slight
modification to our CN methodology, an estimate of the ACN.
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The slight modification is that, instead of choosing an optimum or near optimum
host to infect at every step of the way, such that the entire network is infected as fast
as possible, an uninfected node is simply chosen at random, and the number of steps
taken to infect the entire network is counted. Via our Python© code (see Appendix A),
simulations were run on various graphs, and we now summarize these results in the
tables and figures below. In Appendix B, an example of contagion spread in a 350-node
network is provided, using the Lancichinetti et al. (2008) benchmark graph.

To begin we note that human connections (i.e., social networks) are not modeled
well with random trees. Sociologists model human connections through graphs called
sociograms, where the nodes represent people, and the edges represent a social
interaction between two people. Therefore, we modified our ACN code to simulate
sociograms on what are known as scale-free networks (see Barabasi & Albert, 1999).

3.7.1. Methodology: Simulations of the ACN: Scale free graphs

A note on scale free graphs: As observed by Barabasi & Albert (1999), many real-
world networks have the property that their degree distribution approximates a
power law. This was somewhat unexpected as the degree distribution of a random
network should instead follow a Poisson distribution, thus indicating that real world
networks are not generated in the same way as random graphs. That is, the famous
Erdés & Rényi (1960; reprinted 2011) model for random graph generation is
inadequate for modelling real world networks. In fact, real world networks seem to be
generated by a method of preferential attachment, whereby the probability of newly
added nodes being connected to old nodes is dependent on the degree of the old nodes.
This leads to situations, as is seen in the world-wide-web network, where there are
more than would be expected nodes of very high degree (called hubs), while also more
than would be expected nodes of very small degree (which essentially does not happen
in random networks).

The networks whose degree distribution follows a power law were called scale-
free by Barabasi and Albert, and many generative models have been proposed to
create them. Ideas related to scale-free networks and preferential attachment, in a
wide range of fields, were also studied prior to Barabasi and Albert (see: Barabasi,
2013). In line with these results and this history, this is why we investigate the CN
herein on scale-free networks generated with the Barabasi and Albert model, on the
assumption that social networks, where a virus might spread, are approximately of
this form.

3.7.2. Methodology: Simulations of the ACN: Percent connectedness

Social networks also have different edge densities with respect to the nodes in a
particular sociogram. The Barabasi and Albert method utilizes a parameter, m, to
designate a particular social density, per se. It is an integer that is loosely based on the
edges in terms of n emanating from a particular node. It is maximal at n/2. We
summarize some results for ACNs from the Barabasi and Albert method generated
scale-free graphs at minimal, 25% percentile connectedness, 50t percentile
connectedness, 75t percentile connectedness, and maximally connected scale-free
graphs in Table 2 below.
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Table 2. Estimates for the average contagion numbers of scale-free graphs of order n

Order m=1 m=n/8 wm=n/4 m=3n/8 m=n/2

16 4.1 34 3.0 2.1 2.2
24 53 33 3.0 2.0 2.7
32 59 33 3.0 2.0 2.6
40 6.5 3.0 3.0 2.0 2.8
48 6.7 3.1 3.0 2.0 2.7
56 7.0 3.0 3.0 2.0 2.6
64 7.5 3.0 3.0 2.0 2.7
72 7.5 3.0 3.0 2.1 2.7
80 7.2 3.0 3.0 2.0 2.9
88 7.5 3.0 3.0 2.0 3.0
96 8.1 3.0 3.0 2.1 3.0
104 7.9 3.0 3.0 2.0 3.0
112 7.9 3.0 3.0 2.0 3.0
120 8.2 3.0 3.0 2.0 3.0

The table shows that, in general, as order increases, so does the ACN. What is
interesting here is for even loosely connected scale-free graphs (m=n/8), as long as
they are not trees, the ACN is the same as for scale-free networks with much higher
edge density (m=n/2). Moreover, for every column in the table except the first, the
ACN is either 2 or 3 after rounding to nearest integer, while for scale-free trees, it
increases from 4.1 to 8.2. From this we can infer that any virus spreading through a
community which forms a network that is at least approximately scale-free, if it
spreads by a mechanism similar to the CN, will infect the entire community in roughly
the same amount of time regardless of how dense the corresponding network is. The
exceptional case of a scale-free tree is an outlier in this context.

A final note about the table is that the authors note that the 75th percentile
connectedness column (m=3n/8) behaves differently than the other columns, in that
it has ACN close to 2 for every order shown, while the others (m=n/8, m=n/4, m=n/2)
have ACNs close to 3 for every order shown. Again, our generic Python© code for both
the CN of a tree and the ACN of a graph is available in Appendix A.

Because the contagion number of a network in relation to the number of nodes is
of interest, we next implement a standard linear regression model on the data
generated in prior sections. However, in order to apply linear regression, we first
implemented a common data transformation often used in data science. Namely, we
used the log (base e) of the number of nodes for our input feature and the average
computed contagion number for our respective labels. In the case of the Barabasi and
Albert graphs, the mean squared error was roughly 0.18 on average across many
different instances of test-train splits; for example, see Figure 7. Our trained regressor
did exceptionally well when plotted against the seen minimum and maximum
contagion numbers over the Barabasi and Albert graphs as can be seen in Figure 8.
Our results suggest that labeling networks by numerical values may be a good
predictor of how many hubs on average will be needed to infect the whole network,
via machine learning techniques.
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Figure 7. Predictions made on test data
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Figure 8. Regressor plotted against CN over Barabasi and Albert scale-free graphs

4. Discussion

We began our research with the notion that there is something to be gained by
having an understanding of disease spread. When considering that “Manufacturing the
vaccine had left us with a product as fragile as a snowflake,” (Bourla, 2022 p. 94), the
need to protect limited supplies becomes apparent. With social welfare top of mind
when vaccines are limited in supply, we propose that a network structure dependent
allocation policy can be used to control the spread, as well as meter the impact, of a
disease like COVID-109.

At the heart of this study is the finding that, whether referring to the CN or ACN,
structures that look like trees will have higher values (i.e., slower contagion spread),
than their more connected counterparts, and that more connected counterparts will
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have almost identical contagion spread, regardless of the number of connections, for
networks with the same number of nodes (i.e., people). Social distancing, along with
obeying stay at home orders for all non-essential personnel and properly/diligently
wearing masks can, in effect, change the shape of the network to be more tree-like.
Social distancing is believed to be an effective strategy for decreasing pandemic spread
such as COVID-19 (Liu et al., 2019).

Table 3 and Figure 9 are provided to demonstrate how disease spread can be
slowed when connections are broken in a social network. Note that the ACN becomes
further apart as order increases, speaking to large-scale social distancing. However,
we do acknowledge that sometimes social distancing can be a hard-fought
achievement, as it is not always possible to simply maintain 100% social distancing
(e.g., such as essential workers when the need exists to not turn off essential services).

Table 3. Comparison of min, average, and max CN for trees and for scale-free graphs

Min Avg Max

Order Min Tree ~ Avg Tree  Max Tree Scale- Scale- Scale-

Free Free Free
5 3 3.33 4 2 2.33 3
10 4 4.33 5 3 4.00 5
15 5 5.67 6 4 4.33 5
20 6 6.33 7 5 5.67 7
25 6 6.67 7 5 6.00 7
30 8 8.00 8 5 5.67 6
35 8 8.33 9 5 6.00 7
40 7 8.00 9 6 6.67 7
45 8 9.00 10 6 6.33 7
50 8 8.67 9 5 6.33 7
55 9 9.33 10 6 6.67 7
60 9 9.67 10 7 7.00 7
65 9 9.33 10 7 7.00 7
70 9 9.67 10 7 8.00 9
75 10 10.33 11 7 8.33 10
80 10 11.33 12 7 7.67 8
85 11 11.67 12 8 8.00 8
90 12 12.00 12 8 8.67 9
95 11 11.33 12 9 9.00 9
100 11 11.33 12 9 9.00 9
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Figure 9. Average contagion number for order 5 - 100 for trees and scale-free graphs

5. Conclusions, limitations, and future research

This study delineated a new graph theoretic method, known as the contagion
number, to model worst-case disease spread throughout a sociogram of people or
collection of networked communities. The new method delineated here is simple and
robust; it is only slightly more complicated than the greedy heuristic. It takes
advantage of the fixed radii afforded, to locate each of the burns (set covers), in an
orderly and efficient manner. Our new method discounts any set covers that cause
overburns. Additionally, our methodology’s outcome is deterministic and leads to the
CN for any tree in polynomial time. Indeed, taken in concert, the irreverence of our
new method with respect to multiple infections of the same node combined with its
deterministic, polynomial time algorithm, speaks directly towards the practicality of
its use, when compared to the overburns and NP-hardness of the associated BN
problem.

This study then generated simulations of the same metric, to delineate a most likely
metric of disease spread throughout a sociogram of people or collection of networked
communities. The results can best be seen when comparing networks of trees to
networks more representative of human social networks (e.g., scale-free graphs).
Taken in combination, the implication is that decision makers can utilize both worst-
case scenarios and most likely scenarios, when setting public policy and in managerial
decision making.

The methodology presented herein is not without limitations. These include the
which of the spanning trees of a social network graph should be chosen, the ability to
model “dense” social networks is suspect (i.e., the BN and CN of a completely
connected graph is 2), and some connections will be “stronger” than others (which is
addressed in future resear4ch below).

Future research is aimed at developing models that incorporate additional
components, such as how the SIR model has evolved over time (e.g, nodes
representing vaccinated individuals), a SIR / Markovian transmission probability
contagion number hybrid model of sorts, the stochastic contagion number (i.e., virus
transmission along an edge follows some prescribed density function), and the
dynamic contagion number (i.e.,, the cardinality of the node set and/or the edge
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density of the graph changes over time). It is our hope that the new metric defined
herein provides a benefit for public policy decision makers.
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