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Original scientific paper 

Abstract: A good command of computational and statistical tools has proven 
advantageous when modelling and forecasting time series. According to 
recent literature, neural networks with long memory (e.g., Short-Term Long 
Memory) are a promising option in deep learning methods. However, only 
some works also consider the computational cost of these architectures 
compared to simpler architectures (e.g., Multilayer Perceptron). This work 
aims to provide insight into the memory performance of some Deep Neural 
Network architectures and their computational complexity. Another goal is to 
evaluate whether choosing more complex architectures with higher 
computational costs is justified. Error metrics are then used to assess the 
forecasting models' performance and computational cost. Two-time series 
related to e-commerce retail sales in the US were selected: (i) sales volume; (ii) 
e-commerce sales as a percentage of total sales. Although there are changes in 
data dynamics in both series, other existing characteristics lead to different 
conclusions. "Long memory" allows for significantly better forecasts in one-
time series. In the other time series, this is not the case. 

Keywords: E-Commerce, time series, deep neural network, forecasting, 
prediction error, computational cost. 
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1. Introduction  

In an increasingly global economy, it is possible to see an increase in the 
competitiveness of organisations. Having scientific knowledge and accurate time 
series forecasting methods can lead to success. The articulation of statistical 
techniques and tools, combining mathematical and computational aspects, is 
manifested in explicit support for decision-making, especially in the forecasting 
(Ramos, 2021). 

In Hang (2019), forecasting is recognised as a fundamental tool. The author points 
out that it is essential to create a competitive advantage where forecasting tools 
support proactive planning (e.g., production, business, financing, investments) or even 
contribute to more efficient management of resources. As in other sectors, e-
commerce (electronic shopping) is no exception. 

The e-commerce sector has been an object of interest for professionals and 
researchers. The Internet and the World Wide Web provide an additional channel for 
consumers to find, select and purchase products (Wang & Dai, 2004). Since the 
creation of AMAZON by Jeff Bezos in 1994, e-commerce has grown exponentially in 
the last decades due to the increase in technology, logistics efficiency, and 
globalisation.  

The COVID-19 pandemic accelerated the growth of e-commerce due to the 
lockdown that countries implemented, favouring digital business activities that 
experienced a substantial increase (Modgil et al., 2022). This scenario pushed people 
towards online shopping, the first new electronic shopping experience for many. 

Given this current paradigm, many researchers have studied several important 
issues related to e-commerce. Regarding the impact on customer behaviour and 
satisfaction after the COVID-19 pandemic, Higueras-Castillo et al. (2023) analyses the 
drivers and barriers of online channel usage intentions. The same authors also assess 
the implications for physical channels (based on modifying the Unified Theory of 
Acceptance and Use of Technology model, UTAUT-2) and identify the relevant 
segments of e-commerce consumers versus physical shoppers in the post-COVID-19 
world. Wang and Dai (2004) propose a fuzzy constraint satisfaction approach for 
electronic shopping assistance based on satisfaction with each product. Martínez-
López et al. (2022) investigated the role of return method and return fee on the buyer-
seller relationship. Jiang and Benbasat (2014) examine the virtual product experience 
on the perception of diagnosticity and flow in e-commerce—related to pick-up point 
inventory Ren et al. (2022) proposes an integrated forecast-optimisation approach 
(Machine Learning – Quantile Regression, MLQR) to optimise the predictive shipping 
inventory of pick-up points, taking into account emergency shipping based on the 
historical transaction data of the online retailer. Compared to the original machine 
learning algorithms, MLQR can effectively increase the profits of online retailers. 
Atsalakis (2016) proposes a neuro-fuzzy technique for forecasting a new technology 
in shopping to overcome the drawbacks of neural networks for predicting electronic 
shopping. According to this author, neural networks have been successfully used for 
forecasting time series due to their significant characteristics in dealing with non-
linear data with self-learning ability. However, neural networks suffer from the 
difficulty of dealing with qualitative information and the "black box" syndrome, which 
limits their application in practice. Experimental results also show that the neuro-
fuzzy approach outperforms the other two conventional models (AR and ARMA). 

From these examples, and paying particular attention to the forecasting methods 
used, some questions can be raised: (1) Which methods are most commonly used by 
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professionals? (2) Which direction does the scientific literature point to? (3) Is 
forecasting accuracy the only criterion to consider when choosing a model? 

Wilson and Spralls III (2018) assessed the perceptions of business professionals 
about the usefulness of forecasting techniques and the requirements for their use in 
real-world scenarios. They find that business, economics and finance experts prefer 
classical methods (such as auto-regressive, exponential smoothing or moving average 
models). 

However, in time series analysis, some events can cause changes in the dynamics 
of the historical data, which increases the complexity of modelling and forecasting a 
time series (Chatfield, 2016). Moreover, a change in the behaviour of the series, 
translated mathematically by a disturbance in the model parameters, leads to an 
increase in forecasting error. Therefore, this structural instability can impact the 
forecasting performance of time series models. In particular, econometric forecasting 
models show poor performance in the presence of this type of structural breakpoints 
(Pesaran & Timmermann, 2004). Classical methods, in particular, have been shown to 
have these limitations. 

Given the limitations of classical methods highlighted in the scientific literature and 
taking advantage of the computational advances made in recent years - thanks to the 
use of graphics processing units (GPUs) - scientific research has been directed towards 
the application of various artificial intelligence techniques, namely those based on 
machine learning (Ramos, 2021). 

According to Cavalcante et al. (2016), methodologies in Artificial Intelligence have 
significantly contributed to advances in forecasting analysis. In this paradigm, 
Artificial Neural Network (ANN) methodologies, namely Deep Neural Networks 
(DNN), have been mentioned in the scientific literature as an up-and-coming option 
(Sezer et al., 2020; Tealab, 2020; Tkáč & Verner, 2016). This can be seen not only in 
the improvement of more primitive DNN structures (e.g., Multilayer Perceptron – 
MLP) but also in the search for new architectures (e.g., Recurrent Neural Networks – 
RNN, or even more robust as Long Short-Term Memory networks) with better 
forecasting quality. 

Although there is a wide range of areas that benefit from DNN models, research 
highlights that success tends to focus on: (1) the decision-making process (e.g., 
manufacturing, supply chain, transportation, health); (2) financial difficulties and 
bankruptcies; (3) and stock price forecasting.   

Regarding (1) manufacturing processes, an ANN model was developed for 
optimised ternary metal alloy electrodes to detect CH4 gas as a test case (Ghosal et al., 
2021). About supply chain, Corsini et al. (2022) introduces a data-driven framework 
based on machine learning and metaheuristic optimization to dynamically select the 
most suitable replenishment strategy for a complex two-echelon (supplier-inventory-
factory) supply chain (SC) problem with perishable product and stochastic lead times. 
In this study, the ability of the framework under the predictive and the optimization 
perspective is assessed (considering use of Artificial Neural Network and Particle 
Swarm Optimization) and a sensitivity analysis on the influence of replenishment 
parameters is presented as well. Considering transport problems, the Istanbul transit 
passenger demand number was used to build a real-world prediction model using 
MLP architectures, comparing it to other popular machine learning models (e.g., k-
Nearest Neighbours, Linear Regression, Random Forest, Support Vector Machine) 
(Utku & Kaya, 2022). MLP has more successful than other machine learning algorithms 
in the majority of transportation lines, according to the experimental results. There 
are no references, in comparative terms, to the computational cost attributed to each 
model. Concerning health, more specifically COVID-19, many studies use DNN models 
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to analyse and predict the spread of COVID-19 in cities and countries. For example, in 
the study by Utku (2023), an innovative hybrid deep learning model was developed 
and extensively compared with popular machine learning and deep learning models 
such as MLP, RNN  and  LSTM. The model developed showed promising results, but 
there need to be references to the computational cost compared with other models 
used. Another example of using different LSTM architectures is applied to the 
steelmaking process, where the clogging in the Submerged Entry Nozzle (SEN), 
responsible for controlling the steel flow in continuous casting, is one of the main 
problems faced by (Diniz et al., 2022). The authors point out that this can result in 
losses associated with the process yield and compromise the product quality. The 
LSTM architectures showed promising results, although there are no references to the 
implicit computational cost.  

When discussing (2) and (3), for example, Costa et al. (2019), Lopes et al. (2021) 
and Ramos et al. (2018) report that RNN models (e.g., LSTM) can be promising for 
modelling and forecasting time series with structure breaks or with very irregular 
behaviour (such as time series related to financial markets). However, despite the 
excellent forecasting quality, Lopes et al. (2021) and Ramos et al. (2021) notes that 
these neural network architectures have a high computational cost. Due to the facts 
mentioned by these authors, further reflection is essential, combining the prediction 
power and computational cost of DNN models. 

In short, following Hochreiter and Schmidhuber Field's (1997) work, several RNNs 
have been proposed in the literature based on methods for learning time 
dependencies. It is worth highlighting their applicability and the memory capacity of 
these networks (in particular LSTM, which can retain long-term past information) ( 
Koutník et al., 2014). However, some LSTM architectures can perform better than 
others, often due to the network and data patterns (Jozefowicz et al., 2015). Greff et al. 
(2015) point out that some details in the data can have a more significant impact on 
the modelling and forecasting process than the structure of the neural network. 
Therefore, this work will first focus on understanding the concept of DNN memory and 
then on evaluating its effectiveness in time series analysis and forecasting. 

On this basis, developing research focusing specifically (and comparatively) on 
DNN architectures is considered beneficial. Not only is it a current topic in the 
literature, but it is also in line with the growing interest in Artificial Intelligence 
domains, particularly the applicability of machine learning methodologies. Not only 
have researchers shown particular interest, but organisations have also sought to 
adapt to these methodologies. These facts justify the methodological options outlined 
in this research. Using data related to e-commerce (as they represent a recent change 
in the dynamics of historical data), the most straightforward DNN architectures (MLP 
networks) and more robust RNN architectures with "long memory", as in the case of 
LSTM architectures, are explored.  

In summary, in line with state of the art outlined in the previous paragraphs and 
illustrated in Figure 1, the literature emphasises the potential of RNN architectures, 
which are considered more robust, but rarely refer (in comparative terms) to the 
implicit computational cost. Now, from a practical point of view, organisations (e.g., 
governments, companies) need timely results. Therefore, It is essential to understand 
whether using more robust (computationally intensive) networks is always justified. 
Furthermore, can guidelines be identified from the characteristics present in the data 
to allow for a priori recognition of the cases in which such use is justified? These 
aspects have yet to be much discussed in the literature, so this work aims to contribute 
to the scientific debate. 
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Figure 1. Research question based on the state of the art.  

In terms of the structure of this work, an overview of the literature, as well as the 
objectives, research questions and main contributions of this research, are provided 
in this extended introduction – Section 1.  Section 2 reviews the DNN technique in the 
literature, particularly an explanation of implicit memory in neural networks. Next, 
section 3 presents the data to be used in this study and some considerations about the 
methodological procedures. Section 4 presents a descriptive and inferential data 
analysis, visualisations related to the predictions obtained by each model, and 
accuracy tables. Finally, Section 5 concludes the paper with a discussion of the results, 
conclusions, and references to limitations and future work. 

2. Deep Neural Networks: Understanding the memory concept 

The Multilayer Perceptron (MLP) network, which can be trained using the 
Backpropagation algorithm (Rumelhart et al., 1986), can be seen as one of the first 
steps towards DNN, as it presents multiple hidden layers of artificial neurons (Data 
Science Academy, 2019). In more complex architectures, such as RNNs, in addition to 
the learning that occurs in each training round, there is an additional learning input: 
the output of the neuron observed in the previous training round. The neuron can, 
therefore, capture this sequential learning. This type of architecture is based on an 
enhanced backpropagation algorithm, such as Backpropagation Through Time (BPTT) 
(Pineda, 1987). In addition, ANNs such as LSTMs, a subset of RNNs, can learn long-
term dependencies and select which information to retain based on the data that 
allows the cost function to be minimised, which can be either more recent or older. 
Therefore, the excellent performance of this network in learning long-term 
dependencies is that: (i) it retains learning that occurred several time steps earlier 
(which is not the case for RNNs, which cannot retain long-term information); (ii) it 
forgets information that is not considered essential and therefore does not contribute 
to updating the network weights/biases. The differences in the learning process 
between MLP, RNN and LSTM architectures, which are all deep neural networks, occur 
essentially at the low level of the neuron, as shown in Figure 2. 
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Figure 2. Comparison of hidden cells of MLP, RNN and LSTM. 

MLP neurons are straightforward: each receives an input vector, �̃�, and an external 
bias, 𝑏. These are then summed in a linear combination (𝛴), and the output comes from 
this value passed through an activation function, 𝜑, thus forwarding this output �̃� to 
the subsequent neurons. 

On the other hand, RNN neurons can capture information from previous training 
rounds. At each training round, 𝑡, each neuron is fed with an input vector, �̃�𝑡 , a bias, 𝑏, 
and a learning input that comes from the output of the previous training rounds, 𝑈𝑡−1. 
The activation function defines the output of the neuron. As mentioned above, and not 
only feeds the neurons in the next layer, �̃�𝑡, and provides feedback as input to the same 
neuron in the following training round, 𝑈𝑡 . Looking at what happens within each 
neuron, it is apparent that it is possible to unroll RNN cells concerning time 𝑡 (𝑡 =
1, . . . , 𝑒, where 𝑒 represents the number of training rounds) – see Figure 3. This 
highlights that the feedback loop occurring in each neuron is not a feedback loop but 
the output of the same neuron in the previous training round (instant). The same 
reasoning applies to LSTM cells, the only difference being that LSTM has an output 
feedback loop and feeds back to the state cell. 

 

Figure 3. Comparison of hidden cells of MLP, RNN and LSTM. 

In contrast to RNNs with short-term memory, LSTMs, with the help of the gates 
within the neurons, are prepared to capture both long-term and short-term memory 
and identify important information based on minimising the cost function. As shown 
and detailed in Figure 4, the state of the cell at each training round, 𝑡, acts as a memory 
kernel, as it can retain essential information throughout the processing sequence. The 
received input, 𝐶𝑡−1, corresponds to this kernel cell state in the previous training 
round. In contrast, 𝐶𝑡  corresponds to the cell state value fed to the same neuron in the 
following training round. At each training round, 𝑡, neurons are provided by the input 
vector, �̃�𝑡  the state of the same cell from the previous training round, 𝑈𝑡−1, and a bias, 
𝑏, which is then processed within the neuron. The processing of these neurons 
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distinguishes an LSTM cell from an RNN cell and gives the former its memory 
capabilities which can be exploited. LSTM cells use three types of gates: forget gate, 
input gate and output gate, each with some specificity. 

 

 

Figure 4. Hidden cells of LSTM architecture 

1. In the first phase (forget gate), the information goes through a sigmoid function(𝜎) 
which results in the output of the Forget Gate, 𝑓𝑡 , a scalar between 0 and 1, see Eq. 
1. 

 𝑓𝑡 = 𝜎(�̃�𝑡 ,  𝑈𝑡−1, 𝑏𝑓) (1) 

This output will feed the cell state, multiplied by each value from the entrance of 
the input vector 𝐶𝑡−1. The state of the cell is then updated accordingly with 

 𝐶𝑡 = 𝑓𝑡  𝐶𝑡−1 (2) 

2. On a second instance (input gate), the objective is to add new innovative 
information to the state cell, for which there are 3 steps. Initially, the information 
goes through a sigmoid function, which filters the values to be recalled and 
updated, as shown with the output 𝑖𝑡  in Eq. 3.  

 𝑖𝑡 = 𝜎(�̃�𝑡 ,  𝑈𝑡−1, 𝑏𝑖) (3) 

Afterwards, a hyperbolic tangent function is responsible for constructing the new 
candidate state cells, �̃�𝑡 , with values between −1 and 1, which can be added to the 
state cell, as shown in Eq. 4. 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ (�̃�𝑡 ,  𝑈𝑡−1, 𝑏𝑐) (4) 

Finally, the values of such candidate vector �̃�𝑡 , and the processed values, 𝑖𝑡 , are 
combined through multiplication to obtain a new vector of helpful information, 
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𝑖𝑡  �̃�𝑡, which is added to the state cell, achieving the final cell state at each training 
round 𝑡, as shown in Eq. 5. 

 𝐶𝑡 = 𝑓𝑡  𝐶𝑡−1  𝑖𝑡  �̃�𝑡 (5) 

3. On a third instance (output gate) the information is filtered using a sigmoid 
function, which generates the output of this gate, 𝑜𝑡 , as seen in Eq. 6. 

 𝑜𝑡 = 𝜎(�̃�𝑡 ,  𝑈𝑡−1, 𝑏𝑜) (6) 

The cell state vector referred to in the second instance, 𝐶𝑡 , is transformed by 
applying a hyperbolic tangent function, generating a new vector with values 
between −1 and 1. Finally, the values from this new vector, 𝑡𝑎𝑛ℎ(𝐶𝑡), and the 
following filtered values, 𝑜𝑡 , are multiplied until they are stored as input to feed the 
same neuron on the next training round, see Eq. 7. 

 𝑈𝑡 = 𝑜𝑡  𝑡𝑎𝑛ℎ(𝐶𝑡) (7) 

This way, the LSTM network can distinguish between critical and non-important 
information and retain the former for a long time. This selective information storage 
allows the network to learn continuously throughout the training rounds. 

3. Data and Methodology 

3.1. Data 

To carry out the empirical part of this study, two-time series related to e-commerce 
sales in the US were considered:1 

 
- Sales: This time series refers to the sales volume (in millions of dollars) in e-

commerce retail sales. The data presents a monthly frequency between January 
2000 and November 2022 (275 observations); 
 

- Sales Ratio: This time series refers to e-commerce retail sales as a percentage of 
total sales in the US. The data presents a quarterly frequency between January 
2000 and July 2022 (91 observations). 
 

Due to the COVID-19 pandemic, both time series show a disturbance in the 
historical data in 2020. Based on this similarity, to enrich the study (and to satisfy 
some of the proposed objectives), series with different volumes of data were used 
(which could affect the learning of the neural network). Furthermore, to assess the 
importance of memory in the neural network, the series show different dynamics after 
a perturbation in the historical data (in 2020). One series recovers the past dynamics 
(Sales series), while the other shows a different regime (sales ratio series). More 
details on the time series are discussed in section 4.1. 

3.2. Methodological considerations 

Regarding methodological procedures, Python language was used within the 
Jupyter Notebook environment, and all notebooks are available as open-source (Lopes 

 
1  Data were obtained from https://fred.stlouisfed.org/. 
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& Ramos, 2020). The important libraries used in the codebase were: numpy, pandas, 
statsmodels, matplotlib and tensorflow (with Keras integration). 

In order to organise the development process, the code was separated into the 
following two notebooks: (1) ExploratoryDataAnalysis.ipynb, for exploratory data 
analysis, where first contact with the data is made in order to explore it and 
understand how it behaves (2) DeepNeuralNetwork.ipynb, which contains the code 
that implements the DNN models. All available notebooks have been developed from 
scratch based on the scientific literature. (e.g., Chollet, 2021; Ravichandiran, 2019). 

Regarding DNN, the code allows the implementation of three architectures: MLP, 
RNN and LSTM. The approach taken to build the code was to: (i) pre-process the data 
before feeding it to the neural network; (ii) define the cross-validation methodology; 
and (iii) define the set of neural network hyper-parameters (e.g., number of layers, 
number of neurons per layer, number of training rounds, activation functions, 
optimisation algorithm, and others). A multi-grid explored several possible 
combinations, defining an accurate model. The sequential steps are shown in Figure 5. 

 

Figure 5. Methodology for computational implementation of DNN models. 

A comparison of predicted values against actual price data that the model has not 
seen (test set) was required to assess the model. This analysis generates the forecast 
'error'. The most common performance/error metrics are the following: Mean 
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) (Willmott & 
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Matsuura, 2005). Considering the time series {𝑦𝑡}𝑡∈𝑇 and the past observations from 
period 1,… , 𝑡, and being 𝑦𝑡+ℎ  an unknown value in the future 𝑡  ℎ and �̂�𝑡+ℎ its 
forecast, the prediction error corresponds to the difference between these two values, 
that is, 

 𝑒𝑡+ℎ = 𝑦𝑡+ℎ − �̂�𝑡+ℎ (8) 

where MAE and MAPE are defined, respectively, by 

 𝑀𝐴𝐸 =
∑  𝑠
𝑖=1 |𝑒𝑡+𝑖|

𝑠
 (9) 

 𝑀𝐴𝑃𝐸 =
∑  𝑠
𝑖=1 |

𝑦𝑡+𝑖−�̂�𝑡+𝑖
𝑦𝑡+𝑖

|

𝑠
 100 (10) 

where 𝑠 corresponds to the number of observations in the forecasting samples 
(forecasting horizon). 

4. Results: An application to the e-Commerce sector 

In this research, the volume of sales (in millions of dollars) of e-commerce retail 
sales in the US (Sales time series) and e-commerce retail sales as a percentage of total 
sales in the US (Sales_Ratio time series) were considered – see Section 3.1. 

4.1. Time series analysis 

Regarding the Sales series, the data samples considered a monthly frequency 
between January 2000 and November 2022, i.e., a total of 275 observations (see Figure 
6.) 

 

Figure 6. Sales time series (millions of dollars): graphical representation. 

This graph shows an increasing linear trend, evident signs of seasonal behaviour 
(throughout the year), with a change in data dynamics in 2020. As a result of the 
COVID-19 pandemic, the social isolation policy adopted in March 2020 increased the 
volume of e-commerce sales in this period. The typical values, such as "peaks" in sales 
at the end of the year (November and December 2019), were also observed in 2020. 
In the last months of 2020 (November and December), the sales volume again 
increased significantly compared to the previous months. From then on, the data 
dynamics are very similar to those before 2020, albeit with a higher sales volume. This 
fact leads to a rightward skew in the distribution of historical sales volume data (see 
Figure 7). Additionally, the graphs of the decomposition of the time series (into 



 Ramos et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 668-690  

678 

additive and multiplicative components) and the correlogram are shown in Appendix 
A. 

 

 

Figure 7. Sales time series (millions of dollars): graphical representation of 

cumulative distribution function. 

For the quarterly Sales_Ratio series, the period was between January 2000 and July 
2022, with 91 observations (see Figure 8). 

 

Figure 8. Sales_Ratio time series (percentage of total sales): graphical 

representation. 

Although a globally increasing linear trend and seasonal behaviour can be 
observed in this case, there seems to be a regime change after 2020 (with the COVID-
19 pandemic). The precise dynamics that the series followed until 2020 are lost, 
although a monotony pattern refers to the data history (namely between 2012 and 
2020). These patterns can be better seen in the annual box plots (Figure 9), where a 
significant sample amplitude (corresponding to a variation of more than 5%) and a 
notable interquartile amplitude are observed in 2020 compared to other years. 
Outliers are still visible in the other years. They refer to the sales "peaks" at the end of 
each year (November or December), i.e. months in which there is an increase in sales 
volume.2  

To analyse some features of the time series, Table 1 contains the statistic test and 
the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for the following hypothesis tests: Normality tests (Jarque-Bera test and 
Skewness and Kurtosis tests), Stationarity/Existence of unit root (ADF test and KPSS 
test) and independence test (BDS test).3 

 
2  Additional information about the Sales_Ratio time series is presented in Appendix B (graphical 

representations of the decomposition of the time series and of the correlogram). 
3  For more details about all hypothesis tests, see Ramos (2021). 
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Figure 9. Sales_Ratio time series (percentage of total sales): graphical 

representation of annual box plots. 

As expected, the normality, stationarity, and independence tests are rejected for 
any significance level for the two series under study. In fact, for both time series, there 
is statistical evidence to: (i) not reject the non-normality of the distribution of the data 
(with the rejection of the null hypothesis, which indicates normal behaviour in almost 
all tests performed); (ii) assume the non-stationarity (due to the null hypothesis not 
being rejected when doing ADF test, and due to the statistical value corresponding to 
KPSS being superior to the critical reference values); (iii) infer about the non-iid, since 
the null hypothesis of the data being iid has been rejected through BDS test. 

 
Table 1. Sales and Sales_Ratio time series: normality, stationarity and independence 

tests. 
 

 
 

Normality  
Tests 

Unit Root / 
Stationary Tests 

Independence  
Test 

     

  Kurtosis Skewness Jarque-Bera ADF KPSS BDS (Dim.2–Dim.6) 

Sa
le

s statistic 2.9534 7.5036 105.4438 1.9890 1.4446 27.365 – 33.3505 

p-value   0.0031* 0.0000* 0.0000* 0.9987 --------- 0.0000* 

Sa
le

s 
R

at
io

 statistic -0.0509 3.2667 11.9442 2.5186 0.7639 23.2494 – 32.8662 

p-value     0.9594 0.0011* 0.002* 0.9991 --------- 0.0000* 

 * H0 is rejected for significance levels of 1%, 5% and 10% 

4.2. Modelling and Forecasting 

In the process of modelling and forecasting time series, deep learning methods 
were considered. Specifically, the MLP and LSTM architectures were supposed to 
ensure the performance of time series forecasting. For these neural network models, 
some assumptions about the many combinations of different hyper-parameters 
involved had to be made. The analysis is carried out by considering: (A) inputs and 
data pre-processing; (B) DNN architectures and hyperparameters; (C) training, 
validation and evaluation of the models. 

 
A. Inputs and pre-processing: Some work was done to verify that older/outdated 

information did not benefit the modelling process. In fact, not only did the 
computation time increase but so made the cross-validation errors. In terms of data 
pre-processing, by exponentially smoothing the historical data and then normalising 
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it before feeding it to the ANN, it was found (from the cross-validation errors) that the 
prediction performance was improved. 

 
B. DNN architectures and hyperparameters: The results of two different DNN 

architectures were analysed: MLP and LSTM. One of the main differences between 
these two architectures is undoubtedly the training time of the network (MLP takes 
minutes, while LSTM can take hours). There are many choices regarding the 
parameters and hyperparameters of the neural network. As mentioned in Section 3.2, 
starting from a baseline based on scientific literature, an exhaustive grid search was 
performed to explore different combinations of parameters and hyperparameters. See 
some details. The choice of the number of hidden layers and neurons per layer is a 
more subjective matter. From the studies carried out, the following were found to be 
good choices: (i) a number between three and five hidden layers; (ii) several neurons 
for the first and last hidden layers, close to the number of inputs and outputs, 
respectively; (iii) a higher number of neurons for the inner hidden layers. These 
choices proved appropriate, firstly because they did not interfere with learning the 
network and secondly because they avoided overfitting. In addition, the learning 
process showed that a reasonable (lower) number of neurons for the first hidden layer 
seemed to allow the network to capture the dynamics of the data. On the other hand, 
when many neurons were selected for the first hidden layer, the ANN caught any' 
noise', and the trained model did not give good results (more significant cross-
validation errors). The remaining hyperparameters were chosen according to the ANN 
architecture used and following suggestions from the scientific literature. (e.g., 
Brownlee, 2018). The DNN models tend to overfit training data, so avoiding creating 
too complex models (too many neurons and/or layers) is essential. Some techniques 
explored to reduce overfitting were (i) regularisation (by adding an L1/L2 penalty to 
the cost function); (ii) dropout (by randomly dropping a set of neurons from a hidden 
layer at each training round); (iii) early stopping (by stopping training when the test 
error starts to increase).4 

 
C. Training, validation and evaluation models: The ADAM optimiser was chosen 

to train the DNN, recognised as the most advanced optimiser (Kingma & Ba, 2015). 
The ADAM optimiser was selected to train the DNN and identified as the most 
advanced optimiser (Kingma & Ba, 2015). The stopping criteria were determined by 
playing with the number of rounds. Due to the dataset's characteristics and the ANN 
architecture (MLP or LSTM), it was found that between 150 and 200 training rounds 
seemed to give the best results, and this number of training rounds should be sufficient 
to stabilise training errors.  As validation is an essential step in the model selection 
process, several attempts were made using Forward Chaining, K-Fold and Group K-
Fold. Forward Chaining was found to be the most appropriate method in this study. 
The MAE forecasting performance metric was used to evaluate the model. 
 

Therefore, for the Sales time series, a forecast is made for the following six months 
(from August 2022 to January 2023) using data up to July 2022 for modelling (training, 
validation). The aim is to assess the quality of the forecast in the short and medium 
term. Note that for the first four months (August to November), the forecasts were 
made within the time window of the historical data. In the case of December 2022 and 
January 2023, there is still no information on the actual values that occurred, so it is 

 
4  For more details, see Ramos (2021). 
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crucial to evaluate the performance of the models in light of the decline in expected 
sales volumes.  

Figure 10 shows, for the sales time series, the performance of the two models to be 
evaluated (MLP model and LSTM model) and the future forecasts for the subsequent 
two observations (December 2022 and January 2023). The actual observations from 
August to November are shown (blue line) to compare the out-of-sample forecasts.  

 

Figure 10. Sales time series (millions of dollars): forecasting performance 

of the DNN models and future projections. 

While it is acceptable to mention that the LTMS model may have better accuracy, 
the two models have a similar forecasting quality (both in the short and medium term). 
Furthermore, both models can forecast the expected seasonal behaviour (increase in 
December and decrease in January). 

The same methodology was applied to the Sales_Ratio time series. In this case, data 
up to July 2021 is used for modelling, and a forecast is made for the next six months 
(October 2021 to January 2023). For the first four cases (January to July 2022), 
forecasts were made within the time window of the historical data. There is still no 
information on the actual values that occurred for the following forecast values 
(October 2022 and January 2023), so it is important to evaluate the expected 
monotony.   

In Figure 11, for each model ((A) MLP model and (B) LSTM model), it is possible to 
observe(i) data used to train the model (shaded area) to perform the in-sample 
prediction (orange line); (ii) data used to train the model to perform the out-of-sample 
prediction (blue line). These forecast values allow the performance of the model to be 
assessed. 

From the analysis of both figures (Figure 10 and Figure 11), it may be concluded 
that both models generally capture the dynamics of the data and provide accurate 
forecasts. A more significant difference in the accuracy of the models is observed in 
the case of the Sales_Ratio time series. The LSTM model's predicted values follow the 
line of the actual values with greater precision than the MLP models. Furthermore, the 
expected seasonal behaviour (in December and January) seems to be more evident in 
the case of the LSTM model because of long-term memory. 

4.3. Comparing Results 

For a more detailed analysis, the MAPE values associated with the out-of-sample 
forecast have been calculated for four forecast observations (for which there is 
information about actual values). To present the MAPE values, it is vital to make one 
remark. The parameters of the neural network (weights and bias) benefited from a 
pseudo-random initialisation instead of using a fixed kernel (Glorot & Bengio, 2010).  
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Figure 11. Fitting and forecasting of the Sales_Ratio time series: (A) MLP 

model; (B) LSTM model 

For a more careful and fairer analysis and to avoid outlier results, the forecast was 
carried out in a loop (60 runs), and the 5% worst and best results were overlooked. 

Table 2 shows the range of MAPE values (lower and upper bounds trimmed by 5%) 
for the MLP and LSTM models. 

 
Table 2. Predictions errors of the MLP and LSTM models (MAPE)* 

 

* Minimum values - Maximum values (trimmed by 5%) obtained in a total of 60 runs 

 
In general, focusing on the observed values, the following can be inferred: (i) the 

forecasting performance decreases with the increase of the time horizon for both DNN 
models (values ranging from 0.10% in the short term, reaching values above 3% in the 
medium term); (ii) the prediction errors generated by the LSTM forecast are generally 

Model 
 Sales  Sales Ratio  
Aug. 22 Sept. 22 Oct. 22 Nov. 22  Oct. 21 Jan. 22 Apr. 22 July 22 

 
MPL 

0.11% 
– 

0.16% 

0.21% 
– 

0.32% 

0.52% 
– 

0.88% 

0.97% 
– 

1.38% 

 0.18% 
– 

1.01% 

1.89% 
– 

2.47% 

2.32% 
– 

3.52% 

2.80% 
– 

3.87% 

 

LSTM 
0.10% 

– 
0.16% 

0.18% 
– 

0.27% 

0.40% 
– 

0.58% 

0.66% 
– 

0.95%  

0.18% 
– 

0.99% 

0.28% 
– 

0.73% 

0.31% 
– 

0.92% 

0.63% 
– 

1.18% 
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more consistent (smaller error range) than those generated by the MLP forecast. In 
terms of forecasting quality: (i) both models have a good quality for the Sales time 
series (in the short term with similar forecasts); (ii) there is a more significant 
difference for the Sales_Ratio time series, with the LSTM model outperforming the 
MLP model; (iii) this difference is more marked as the forecasting horizon increases 
(for the LSTM models it reaches 1.18% in the worst case, whereas for the MLP models, 
it is above 2% in the best case). Given these differences (in both time series), the 
results must be examined in more detail. 

Both time series show a change in the historical data dynamics, with a sharp and 
sudden increase in e-commerce due to the measures adopted due to the COVID-19 
pandemic (e.g., social isolation and the physical shutdown of some commercial 
activities). However, in the case of the Sales time series, the dynamics recovered after 
the increase in 2020. With monthly data frequency, the observations available for 
model training allowed the MLP learning networks to understand this dynamic. As a 
result, the forecasting accuracy of the MLP model does not differ significantly from 
that of the LSTM model. In this case, these latter architectures' "long memory" capacity 
does not bring significant advantages. Past learning does not add any additional 
information to the model.  

The same is not valid for the sales ratio time series. In this case, despite maintaining 
a particular seasonal behaviour, the trend line of the time series shows a change after 
2022. With quarterly data frequency, the history of observations underlying this 
"new" behaviour is negligible. In this case, in addition to the change in the dynamics of 
the data, the reduced information available for training the neural network seems to 
be the reason for the poorer performance of the MLP model. This model tends to 
produce higher forecasts than those observed. On the other hand, the memories stored 
in the training and learning process, adapted to the new data dynamics, seem to help 
the LSTM networks to produce forecasts more closely aligned with the real data.  

The above considerations confirm that the memory inherent in the LSTM 
architecture can, in some cases, play an important role in modelling and forecasting 
time series. It should be noted that these architectures are characterised by the use of 
memory resulting from past learning. 

5. Discussions and Conclusions 

This paper focuses on more advanced computational techniques for analysing and 
forecasting time series, given the limitations in the scientific literature concerning 
classical methods (e.g., the inability to handle more complex patterns and truly 
capture such dynamics).  

A current and exciting topic in the scientific literature relates to e-commerce and 
the emerging paradigm shifts resulting from the "digital age" in which we live, which 
the COVID-19 pandemic has accelerated. In this context, the empirical study developed 
is based on two-time series relating to e-commerce retail sales in the US: (i) e-
commerce sales volume; (ii) e-commerce sales as a percentage of total sales. Both time 
series show a change in dynamics due to the COVID-19 pandemic. Social isolation, 
travel restrictions, and the shutdown of some brick-and-mortar businesses, among 
other measures, led to a sharp and sudden increase in e-commerce.  

It is interesting to analyse and forecast the volume of e-commerce sales and the 
weight of this volume to total sales. Here, forecasting methods play an essential role in 
supporting decision-making. In line with the literature, deep learning methods (in 
particular DNNs) were used to assess the 'learning' ability to extract relevant insights 
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from data. "Long memory" neural networks (e.g., LSTM architectures) are proposed as 
the best option compared to other simpler neural networks (e.g., MLP architectures).  

The results of this study are consistent with the literature. When analysing the 
forecasting ability, MLP models generally have a worse forecasting performance. The 
disadvantage of MLP networks is evident in cases where there is a change in the data 
dynamics, aggravated by the existence of few historical observations that enable 
better neural network training. In this case, confirming that the memory concept 
inherent to the LSTM architecture allows the network to learn the data better and 
improve the forecasts' quality is possible. The care taken in explaining the "memory 
concept" in Section 2 will enable us to understand why LSTM architectures stand out 
in this case. Not only referring to the predictive power of these architectures but 
understanding in detail where and also the real contribution as an asset of this 
investigation. 

However, the choice of more robust neural network architectures, such as LSTM, 
is to have a reductionist view. This work brings to reflection a theme often neglected. 
In this research line, it is necessary to answer two fundamental questions, bringing a 
more profound reflection to the scientific literature: (1) Are more "robust" DNN 
architectures always the best choice?; (2) How can the data help us choose the most 
suitable DNN architectures? 

It is often the case that only the quality of the forecast is considered, whilst the 
inherent computational cost is overlooked. Some (not much) literature highlights that 
long-memory neural networks, such as LSTM, have a high computational cost. This is 
because the choice of hyperparameters can be more complex, and learning and 
validation time is substantially higher (about 30% to 40% higher compared to MLP 
networks). Unless powerful machines are used, several hours of training may be 
required to benefit from the improved forecasting quality associated with LSTM 
models, which may not be feasible in a real-world context. Stakeholders (e.g., 
governments, investors, companies) sometimes require quick and timely responses. 

In this study, although the time series may have suffered from disturbances in the 
historical data (which, according to the literature, can undermine the success of 
classical forecasting methods), the forecasting performance of MLP networks is 
similar to that of LSTM networks when the dynamics of the data are recovered. Thus, 
contrary to the prevailing idea of opting for more complex DNN models, simpler neural 
network architectures may be the right choice. Using our understanding of the concept 
of memory behind DNNs (and where this memory can be helpful in the training and 
validation process), combined with careful analysis of the data history, can be a sound 
practice. In this way, the quality of the forecast is preserved, and a significant 
reduction in computational cost is achieved. These considerations answer the above 
questions, which are often neglected in the literature. The predictive power is 
important, and the computational cost must be considered.  

In short, the forecasting models should mind the needs of the real world. 
From the above, and confident that this paper sheds light on the subject, some 

limitations are acknowledged in the present research. Namely: (i) further 
development of the analytical perspective – so that the results observed can have a 
more robust theoretical underpinning; (ii) increasing the diversity of the time series 
used – so that extrapolated conclusions are more robust and unbiased concerning the 
data used. Given these limitations, future work is suggested to explore the theory 
behind DNN models further and test the results on time series with different 
properties (without trend and/or seasonality). In addition, future work should 
explore improvements to the DNN models to reduce computational time significantly 
and, if possible, improve forecast accuracy. Research and implementation of hybrid 
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models (e.g., Ramos et al., 2022; Rubio and Alba, 2022) have been highlighted in the 
literature as a promising solutions. 

In general, their contributions are acknowledged, although some limitations are 
beyond this study's scope. It presents a contribution to the theory analysed (namely, 
the memory concept present in some DNN architectures) and, above all, to the 
computational aspect discussed. The robustness of the computational routines 
constructed (open source), the computational tests carried out, and their results' 
interpretation further contribute to the work on the subject matter. It is believed that 
this work can be used as a starting point for future work, where a compromise 
between the strengths of Artificial Intelligence and the human ability to understand 
what the data require is vital. 
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Appendix A 

 

Figure A1. Sales time series: graphical representation of the decomposition 

 

Figure A2. Sales time series: graphical representation of the correlogram 
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Appendix B 

 

Figure B1. Sales_Ratio time series: graphical representation of the decomposition 

 

Figure B2. Sales_Ratio time series: graphical representation of the correlogram 
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