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Taking an integrated approach towards production, maintenance, and control 
in manufacturing systems is crucial due to the profound impact of their 
interconnections. Investigating these aspects in isolation may lead to 
infeasible solutions. This research focuses on the real-time and autonomous 
decision-making process concerning joint production planning, maintenance, 
and quality problem in a stochastic deteriorating production system with 
limited maintenance activities. Formulating the problem as a continuous 
semi-Markov decision process accounts for the complexities of the real 
production system and the occurrence of events over an uneven and 
continuous period. While dynamic programming is a common tool for 
addressing joint optimization problems, it has limitations, such as the curse of 
dimensionality. In this study, the optimal policy of the decision-maker agent 
is obtained by the goal-directed machine learning method called (R-SMART) 
and agent-based modeling. To the author's knowledge, the proposed 
approach is novel, and there is little research on such an implementation of 
the joint optimization problem. The quality of the optimal policy is evaluated 
through heuristic and simulation-optimization methods in various scenarios. 
The results demonstrate that the proposed RL-based method outperforms 
others in most scenarios, achieving a stable, integrated optimal policy. 
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1. Introduction 

Production planning, maintenance, and ensuring the quality of finished products pose significant 
challenges in manufacturing systems. The primary objective of production planning is to efficiently 
schedule tasks and allocate resources, aiming to achieve operational and economic goals such as cost 
minimization, tardiness minimization, and production maximization [1]. In addressing maintenance 
issues, the primary focus is optimizing production machine availability while minimizing associated 
costs.  
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Maintenance activities utilize time that could otherwise be allocated to the production process. 
However, delaying maintenance and repair activities to boost production may elevate the risk of 
system malfunction. Consequently, maintenance planning and production planning often find 
themselves in conflict [2]. 

The quality of finished products is also affected by the depreciation of the production system. As 
the production system experiences more depreciation, the likelihood of producing lower-quality 
finished products increases.  

In modern manufacturing systems, it is crucial to consider the mutual interaction between 
production planning, maintenance, and quality. However, only a limited number of researchers have 
explored this integrated perspective [3].  

While dynamic programming (DP) is a common tool employed by most researchers in this field, 
it comes with limitations: 

i. Detailed system models are required, including transition probabilities for each state-
action pair.  

ii. Computational requirements grow exponentially with an increase in the number of state 
variables (Curse of Dimensionality).  

As a result, DP methods prove inefficient when dealing with complex and large-scale problems, 
such as those encountered in many real manufacturing systems.  

Artificial intelligence (AI) has made much progress in recent years and encourages researchers to 
adopt AI in various fields, including manufacturing. The combination of AI and manufacturing systems 
leads to the term "smart manufacturing," that is, the incorporation of intelligence systems such as 
the Internet of Things and Machine Learning techniques into manufacturing processes for accurate 
measurement and inspection of indicators, e.g., inventory level and quality of products [4]. In 
addition, the manufacturing systems offer many opportunities to apply AI techniques to support 
decision-making [5].  

In recent years, a goal-directed learning method called reinforcement learning (RL) has been 
applied in many areas, including manufacturing. RL, one of the three machine learning methods, 
focuses on learning how to map situations to actions to maximize numerical rewards [6,7]. However, 
as suggested by Sutton and Barto [6], RL methods prove to be efficient alternatives for multi-state 
optimization.  

This research aims to propose an integrated method for production planning, maintenance, and 
product quality within a production system. The objective is to derive an optimal policy using agent-
based modeling (ABM) and reinforcement learning. Formulating the optimization problem as a semi-
Markov decision process (SMDP) allows us to treat it as a continuous decision-making process. In our 
approach, a decision-maker agent interacts with the agent-based simulation model of the production 
system. The agent observes the system state, selects an action, and implements it into the simulation 
model. The resulting next state and acquired reward are then fed back to the agent. This iterative 
process continues until the agent attains the final optimal policy. To evaluate this policy, we 
implement a heuristic policy, comparing the results through a simulation-optimization approach. A 
comprehensive performance analysis will be conducted to assess the efficiency of the RL-based 
method in comparison to existing policies. 

The main contributions of this paper are as follows:  
i. Addressing the integrated production, maintenance, and quality control problem in the 

production system with a limited number of maintenance activities between 
consecutive repair activities. Previous research often assumed an unlimited number of 
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partial maintenance procedures between two consecutive repairs, which is unrealistic in 
many real-world scenarios.  

ii. Developing an agent-based simulation model for the production system to facilitate the 
seamless integration of the decision-maker agent and the simulation model. While 
discrete event simulation has been widely applied in this field, the agent-based 
approach proves to be more consistent and scalable, particularly for large-scale 
problems.  

iii. Formulating the integrated production planning, maintenance, and quality problem as a 
continuous semi-Markov decision process, and the average reward RL algorithm 
achieves the optimal or near-optimal policy. The use of SMDP enables real-time 
decision-making, a crucial aspect of Industry 4.0.  

iv. Conducting a comprehensive efficiency comparison between the proposed RL+ABM 
approach and heuristic and simulation-optimization methods in various scenarios. These 
scenarios are designed based on the utilization rate of the production system, 
categorized as low, normal, and high.   

The remainder of the paper is structured as follows: Section 2 presents the literature review. 
Section 3 introduces the production system and outlines the assumptions made. In Section 4, we 
provide the agent-based model of the production system, offer a brief review of the Markov and 
semi-Markov decision processes, and describe the implemented RL algorithm. Section 5 details the 
alternatives for evaluating the acquired policy. Numerical results of the integrated production, 
maintenance, and quality problem are presented in Section 6. Finally, Section 7 concludes the paper, 
identifies research limitations, and outlines potential future research directions. 

 
2. Literature Review 

In recent years, as manufacturing systems have become more intricate and customer demands 
continuously evolve, researchers have concentrated on the integrated optimization of production 
planning, maintenance, and product quality. The research can be categorized in terms of the problem 
definition, assumptions of the production system, and problem formulation. In the following, we 
cover the recent related papers that addressed the combined optimization in the domains of 
production systems.  

Although some literature mentioned the economic effects of the combined view of production, 
maintenance, and quality [8, 9], the literature that covers the topic is rare [3]. 

Integrated production and maintenance planning in a single machine-single product system with 
PM policy has been investigated by Aghezzaf et al. [10] and Chen [11]. Chouikhi et al. [12] addressed 
the combined maintenance and quality problem in a single-machine production system. The system 
is subject to deterioration, which impacts the product quality, and condition-based maintenance has 
been considered. Khatab et al. [13] investigate optimally integrating production quality and 
condition-based maintenance problems in a single-product, single-machine production system. 
Hadian et al. [14] consider maintenance, buffer stock, and quality control problems in deteriorating 
single-machine production systems. The problem is formulated by mathematical modeling, and a 
genetic algorithm has been applied to find the joint planning. In a similar production system, Cheng 
et al. [15] applied a simulation-optimization (SO) approach to jointly optimize the inventory size, PM 
policy, and lot size. The integrated problem of the production strategy and quality control in a single-
machine production system is considered by Bouslah et al. [16]. The SO has been applied to jointly 
optimize the production lot size, the inventory threshold, the maintenance and repair activities 
threshold, and the sampling plan. Another integrated policy is presented by Bouslah et al. [17]. They 
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jointly optimize a single product-multi machine production system subject to operation-dependent 
and quality-dependent failures, so increasing the degradation of upstream machines leads to the 
production of defective products in the preceding machines. SO has yielded the optimal policy to 
control the production thresholds, the quality control level, and the preventive maintenance 
thresholds. Fakher et al. [18] consider the multi-product, single-machine production system and 
develop an integrated optimization model to maximize the expected profit. The simultaneous 
production planning and quality control problem in a single machine-single product production 
system is optimized through the SO method by Rivera-Gómez et al., [19]. A single machine-single 
product system subject to quality deterioration to find optimal control policy is presented by Rivera-
Gómez et al. [3]. Preventive maintenance (PM) and quality control policies are suggested to increase 
system availability, and the SO approach has been used to acquire the optimal policy. Some research 
has also investigated the application of meta-heuristic methods in production and maintenance 
scheduling problems [20, 21]. They consider a single degrading production system, and genetic 
algorithm, simulated annealing, and teaching learning-based optimization have been used to solve 
the problem. 

The application of machine learning in production lines has been reviewed by Kang et al. [22]. In 
this research, quality, and availability are the most important applications of machine learning in 
manufacturing systems. Reinforcement learning is an emerging machine learning method for 
optimization problems in manufacturing systems, specifically in the combined optimization problem 
of the topic.  

Kuhnle et al. [23] applied reinforcement learning to find the optimal maintenance schedule for 
parallel working machines to reduce the system's downtime and increase production. Xanthopoulos 
et al. [24] formulate the combined production maintenance optimization problem in a single 
machine-single product system as a Markov decision process. They applied an average reward RL 
method called R-learning [25] to find the optimal policy. The Kanban and threshold-type inventory 
and production policy (s, S) have examined the quality of the RL-based policy. An extension of 
previous research has been proposed by Paraschos et al. [26]. They formulate combined production 
maintenance and quality control of the single machine-single product as a Markov decision process. 
Like the previous paper, the optimal policy has been obtained by the R-learning algorithm. The 
manufacturing system is affected by several deterioration failures, and the quality of the finished 
product is related to the system's deterioration level. Along the same line, the R-learning algorithm 
is applied to find the optimal preventive maintenance and production scheduling policy in a single-
machine production system [27]. Wang et al. [28] studied the integrated production scheduling and 
maintenance optimization problem in a single-machine production system with deteriorating effects. 
They applied a Q-learning-based solution framework to find the optimal joint policy. In a multi-
machine production system, preventive maintenance is acquired by the Deep reinforcement learning 
agent [29]. The problem is formulated as an MDP, and a Double Deep-Q-Network is applied to learn 
the policy.  

A multi-agent deep reinforcement learning algorithm was developed to optimize the 
maintenance scheduling in a parallel production system by Rodríguez et al. [30]. The algorithm learns 
a maintenance policy that technicians perform in the stochastic multi-machine production system 
under the uncertainty of failures. The RL agents partially observe the state of each production 
machine to coordinate maintenance decisions, leading to the dynamic allocation of maintenance 
tasks to technicians (with different skills). 

Lee and Mitici propose [31] a deep reinforcement learning algorithm for predictive aircraft 
maintenance planning and minimizing maintenance costs. Convolutional Neural Networks and 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 1 (2024) 396-419 

400 
 

 

Monte Carlo estimate the remaining useful life of parts (RUL). They compare the efficiency of the 
policy obtained by DRL with the mean-estimated RUL.  

Wesendrup and Hellingrath [32] investigate the production, spare parts, and maintenance 
planning for a single-machine system using RL. The research aims to maximize production revenue 
by meeting customer demands and minimizing costs. They apply Proximal Policy Optimization to 
post-prognostics production planning and control decision-making.  

Zhenggeng Ye et al. [33] investigate a joint optimization of preventive maintenance and quality 
in manufacturing systems. They offer machine-level dynamic reliability and quality models to deal 
with complex interactions in manufacturing networks. In addition, they propose a Deep Deterministic 
Policy Gradient (DDPG) algorithm to obtain the joint quality and reliability policy in the manufacturing 
system. 

Geurtsen et al. [34] investigate the joint optimization problem of production activities and 
maintenance in an assembly line. The assembly line consists of a serial production line with N 
machines and N-1 buffers, and the maintenance must be scheduled on the last machine of the 
production line. They employ average-reward deep reinforcement learning techniques to find the 
optimal joint policy.  

Although the research mentioned investigates the joint optimization policy, it is often considered 
paired topics (e.g., production and maintenance), and little research has addressed the joint optimal 
policy of production, maintenance, and quality. Furthermore, in the limited research that has 
explored this tripartite optimization, to the author's knowledge, the assumption of the restricted 
number of maintenance activities between two consecutive major repair activities is not included, 
and the unlimited number of maintenance can be performed on the production system to return the 
system to the previous deterioration stage. However, maintenance activities are typically limited in 
the practical production system, and major repair actions are unavoidable in many instances to 
restore the system to its initial stage. This research aims to bridge this gap by considering these real-
world constraints. Moreover, integrating an RL-based decision-maker agent with an agent-based 
production system to derive a joint optimal policy is seldom explored in the reviewed literature. 

 
3. Problem Description  

The problem investigated in this paper is a production system contains a single production 
machine and a storage facility with capacity 𝐼𝑚𝑎𝑥. The production system produces only one type of 
product stored in the storage facility to satisfy customer demands. The production times are 
exponentially distributed with parameter 𝜆𝑝, and the cost of production is 𝐶𝑝. 

During the production process, the machine deteriorates from 𝑑0 (as-good-as-new) to 𝑑𝑛 
(malfunction). The deterioration level of the production machine is defined by 𝑑 stages so that after 
the occurrence of deterioration failures, the stage transfers to 𝑑 + 1 until the breakdown level 𝑑𝑚𝑎𝑥. 
In each deterioration stage between 1, ⋯ , 𝑑𝑚𝑎𝑥 − 1, the machine can be maintained at a cost of Cm 
or repaired at a cost of 𝐶𝑟, and returned to the previous deterioration stage or the initial stage, 
respectively. The maintenance and repair activities are exponentially distributed with parameter 𝜆𝑚 
and 𝜆𝑟. In addition, the maximum number of authorized maintenance activities between two 
consecutive repair activities is limited to 𝑈𝑚𝑎𝑥. In 𝑑𝑚𝑎𝑥, the production system fails, and the repair 
activity must be carried out. By repair activity, the deterioration level of the system back to the stage 
𝑑0.  

It should be noted that the production process can occur when the deterioration level of the 
system is between 𝑑0 and 𝑑𝑚𝑎𝑥−1 and the maintenance and repair activity will be the only option 
when the deterioration level of the system is 𝑑𝑚𝑎𝑥. 
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Moreover, in each deterioration level, the production machine may encounter an unexpected 
breakdown with probability 𝐵𝑑 and cost 𝐶𝑏. Maintenance and repair activities can be conducted to 
prevent such breakdowns. The breakdown recovery duration is exponentially distributed with 
parameter 𝜆𝑏. It is assumed that 𝜆𝑏 > 𝜆𝑟 > 𝜆𝑚 and 𝐶𝑏 > 𝐶𝑟 > 𝐶𝑚. 

The quality of the product is affected by the deterioration level. There is a probability of producing 
low-quality products 𝑄𝑑 according to the deterioration level with cost 𝐶𝑞 . The production system is 

more likely to produce a low-quality product when the deterioration level of the system increases. 
The cost of the low-quality product is the difference between the acquired profit of high-quality and 
low-quality products. 

The time interval between two successive customer demands is considered exponentially 
distributed with parameter 𝜆𝑑. The amount of each demand follows Poisson distribution with 
parameter 𝜆𝑛. At the time of demand arrival, the demand is immediately satisfied if the inventory is 
sufficient and the profit 𝑃 is acquired. Otherwise, the customer demand is back-ordered by FCFS (first 
come – first served) policy, and the maximum allowed back-orders is 𝐵𝑚𝑎𝑥. It is clear that the 
customer demand is lost (missed orders) when the system has reached the maximum permitted 
back-orders and the cost 𝐶𝑙 is acquired. The production system includes the holding cost 𝐶ℎ when 
the inventory of the finished product is available. Otherwise, the shortage cost 𝐶𝑠 is considered. 

In the following section, the agent-based model of the production system is developed as a 
manufacturer agent by implementing the characteristics mentioned above. Then, the state space, 
the set of actions, and the reward function associated with the actions are defined to specify the 
input data of the decision-maker agent. Finally, the decision-maker agent, the decision-making 
procedure by reinforcement learning techniques, and the interaction of the manufacturer agent and 
the decision-maker agent are described. 

 
4. System Modeling 

Dynamic and time-dependent processes can be modeled as agent-based models. As highlighted 
by Macal and North [35], the agent-based model comprises three fundamental elements: 

i. Definition of the agents, attributes, and behaviors; 
ii. The agents' relationship and interactions; 

iii. The agents' environment; 
 
Agents, defined as artificial individuals operating based on their behavior and collaborating or 

competing with other agents [36], must possess specific characteristics to be considered as agents. 
These characteristics include autonomy, modularity, sociality, and conditionality [35]. Additionally, 
agents can be equipped with learning or evolutionary capabilities, such as artificial intelligence, 
allowing them to adapt to changes in themselves or the environment [37].  

Agent-based modeling is more general and consequential than traditional approaches, e.g., 
Discrete Event Simulation and System Dynamics, because it captures more complex structures and 
dynamics [38].  

This paper employs the agent-based modeling approach to simulate the production system. 
Based on the characteristics outlined for agents, two entities are considered: the manufacturer agent 
and the decision-maker agent. Additionally, the production system and its finished product buffer 
are modeled as the environment.  
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4.1 Manufacturer Agent 
The manufacturer agent is responsible for the production process. This agent has six states; the 

initial state is "ready for the action." In the initial state, the manufacturer agent can receive one of 
the following messages from the decision-maker agent: 

i. Produce: the manufacturer agent with 0 ≤ 𝑑 < 𝑑𝑚𝑎𝑥 transits to "produce" state with 
1 − 𝐵𝑑 probability and produce a high-quality product with 1 − 𝑄𝑑 probability after 𝜆𝑝, 

or with 𝐵𝑑 probability, the agent transits to the "breakdown" state, and after 𝜆𝑏, the 
agent's state returns to the initial state. During the production process, with 𝑓𝑑,𝑝 

probability  
(𝑑 = deterioration, 𝑝 = number of productions since the last deterioration failure), the 
deterioration level of the production machine increases by one unit. 

ii. Maintain: the agent starts the maintenance activity, and after 𝜆𝑚, the deterioration level 
decreases by one unit.  

iii. Repair: the manufacturer agent starts the repair activity, and after 𝜆𝑟, deterioration 
level will be as good-as-new (d=0), and the state will return to the initial state.  

Idle: the agent transits to the "idle" state until the next customer demand arrival.  
 

Fig. 1. The behavior of the manufacturer agent 
 

The manufacturer agent operates without interruption until the completion of the process in 
each state. Interactions between agents are only permitted when the manufacturer agent is in the 
initial state. The behavior of the manufacturer agent is presented in Figure 1.  

 
4.2. Decision Maker Agent 

The decision-making process can be formulated as a Markov-decision process that consists of 
four elements: state space, set of actions, transition probabilities, and rewards [6]. As shown in Figure 
2, the transition times in MDPs are discrete and equally distributed. Therefore, there is no concept 
of time in MDP. However, in many decision-making problems, the next state of the system and the 
received reward can be affected by the duration of the transition time drawn from probability 
distributions. Such problems can be modeled as Semi-Markov decision processes and interpreted as 
continuous-time stochastic systems [7]. 
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Fig. 2. The decision epochs in the Markov-decision processes 
 

In this research, the decision-making process is formulated as a continuous semi-Markov decision 
process, and an average reward Reinforcement Learning method called R-Smart (Relaxed Semi-
Markov Average Reward Technique) [39] has been applied for computing optimal or near-optimal 
policies. In the following, the decision-making process formulation has been described. 

 

4.2.1. Decision epochs 
The decision-maker agent can only send a message (make a decision) when the manufacturer 

agent is in the "Ready for the action" state. Because the transition time from one state to another is 
stochastic, the duration between decision epochs is unequal (Figure 3).  

 

Fig. 3. The decision epochs in the SMDPs concept 
 

4.2.2. State space 
In every decision epoch, the decision-maker agent observes the state of the production system 

as the following vector: 
𝑆𝑡 = (𝑆1

𝑡, 𝑆2
𝑡, 𝑆3

𝑡) = (𝐼(𝑡), 𝑑(𝑡), 𝑀(𝑡))  (1)            
Where 𝐼(𝑡) is the inventory level of the production system at time 𝑡, 𝐷(𝑡) is the deterioration 

level of the production machine at time 𝑡, and 𝑀(𝑡) is the number of maintenance activities 
performed since the last repair activity. The entire state space of the production system can be 
written as: 
𝑆1 = −𝐵𝑚𝑎𝑥, ⋯ , 𝐼𝑚𝑎𝑥                            (2) 
𝑆2 = 0, ⋯ , 𝐷𝑚𝑎𝑥               (3) 
𝑆3 = 0, ⋯ , 𝑈𝑚                          (4) 

So, the total number of production system states is:  
𝑁(𝑠) = (𝑑 + 1) × (𝐼𝑚𝑎𝑥 + 𝐵𝑚𝑎𝑥 + 1) × (𝑈𝑚 + 1)  (5) 

 

4.2.3. Set of actions 
In every decision-making epoch, the decision-maker agent can initiate one of the following 

actions: 
i. Authorize the manufacturing agent to produce a new product 

ii. Authorize maintenance activities  
iii. Authorize repair activities 
iv. Authorize the manufacturing agent to remain idle 
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Admissible actions in every state are defined by the action-state function 𝐴(𝑆1, 𝑆2, 𝑆3) that is 
written as: 

 𝐴(𝑆1, 𝑆2, 𝑆3) = {𝑝𝑟𝑜𝑑𝑢𝑐𝑒, 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛, 𝑖𝑑𝑙𝑒} 𝑤ℎ𝑒𝑟𝑒: {

𝑆1 = −𝐵𝑚𝑎𝑥, ⋯ , 𝐼𝑚𝑎𝑥−1                 
𝑆2 = 0, ⋯ , 𝑑𝑚𝑎𝑥 − 1                       
𝑆3 = 0, ⋯ , 𝑈𝑚𝑎𝑥 − 1                       

 (6) 

𝐴(𝑆1, 𝑆2, 𝑆3) = {𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛, 𝑟𝑒𝑝𝑎𝑖𝑟, 𝑖𝑑𝑙𝑒} 𝑤ℎ𝑒𝑟𝑒: {

𝑆1 = −𝐵𝑚𝑎𝑥, ⋯ , 𝐼𝑚𝑎𝑥            
𝑆2 = 𝑑𝑚𝑎𝑥                                
𝑆3 = 𝑈𝑚𝑎𝑥 − 1                       

 (7) 

𝐴(𝑆1, 𝑆2, 𝑆3) = {𝑟𝑒𝑝𝑎𝑖𝑟, 𝑖𝑑𝑙𝑒} 𝑤ℎ𝑒𝑟𝑒: {

𝑆1 = −𝐵𝑚𝑎𝑥, ⋯ , 𝐼𝑚𝑎𝑥            
𝑆2 = 𝑑𝑚𝑎𝑥                                
𝑆3 = 𝑈𝑚𝑎𝑥                                

 (8) 

𝐴(𝑆1, 𝑆2, 𝑆3) = {𝑝𝑟𝑜𝑑𝑢𝑐𝑒, 𝑖𝑑𝑙𝑒} 𝑤ℎ𝑒𝑟𝑒: {

𝑆1 = −𝐵𝑚𝑎𝑥, ⋯ , 𝐼𝑚𝑎𝑥 − 1
𝑆2 = 0                                   
𝑆3 = 0, ⋯ , 𝑈𝑚𝑎𝑥                 

 (9) 

𝐴(𝑆1, 𝑆2, 𝑆3) = {𝑖𝑑𝑙𝑒} 𝑤ℎ𝑒𝑟𝑒: {

𝑆1 = 𝐼𝑚𝑎𝑥            
𝑆2 = 0                  
𝑆3 = 0, ⋯ , 𝑈𝑚𝑎𝑥

 (10) 

 
4.2.4. Reward function 

According to the state of the production system, every action of the decision-maker agent is 
associated with the relative reward: 

𝑅𝑡+1 = 𝐶ℎ(𝑡) + 𝐶𝑏(𝑡) + 𝐶𝑙(𝑡) + 𝐶𝑚(𝑡) + 𝐶𝑟(𝑡) + 𝐶𝑝(𝑡) + 𝐶𝑞(𝑡) − 𝑃(𝑡) (11) 

Let ti denotes the decision epochs. Then: 

𝐶ℎ(𝑡) = (∫ 𝐼(𝑡)𝑑𝑡) × 𝐶ℎ

𝑡𝑖+1

𝑡𝑖

 (12) 

𝐶𝑏(𝑡) = (∫ 𝐵(𝑡)𝑑𝑡) × 𝐶𝑏

𝑡𝑖+1

𝑡𝑖

 (13) 

𝐶𝑙(𝑡) = 𝑁(𝑙) × 𝐶𝑙, where 𝑁(𝑙) denotes the number of missed orders between 𝑡𝑖 and 
𝑡𝑖+1 

(14) 

𝑃(𝑡) = 𝑁(𝑃) × 𝑃, where 𝑁(𝑃) denotes the number of sales between 𝑡𝑖 and 𝑡𝑖+1. (15) 

Also, the cost of maintenance, repair, breakdown, and low-quality products is calculated by the 
relevant costs. The main goal of the decision-maker agent is to maximize the expected sum of profits 
and minimize the expected sum of costs listed in Eq. (11). 

 
4.2.5. Average reward reinforcement learning 

In the average reward reinforcement learning techniques for SMDPs, it is assumed that the time 
spent in each transition is not unity. The average reward (𝜌) calculation can be mathematically 
expressed as:  

𝜌
𝜋

= Lim
𝑛→∞

𝐸[∑ 𝑟(𝑠𝑡, 𝜋, 𝑠𝑡+1)
𝑛
𝑡=1 ]

𝐸[∑ 𝑡(𝑠𝑡, 𝜋, 𝑠𝑡+1)𝑛
𝑡=1 ]

 (16) 

Where π is the policy, r is the acquired reward, and t is the transition time. Finding the policy that 
returns the highest average reward is the primary goal of the average reward RL techniques. R-
learning [25], variants of R-learning [40], and R-SMART [39,41] are some of the average reward RL 
algorithms. 

This research uses the R-SMART algorithm to find the optimal policy for the combined production, 
maintenance, and quality problem. The algorithm estimates the action value of each state as 𝑄(𝑠, 𝑎) 
and attempts to find the optimum policy by maximizing the average reward. The agent updates the 
action value of each state as follows: 
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𝑄(𝑠, 𝑎) ← (1 − 𝛼𝑡)𝑄(𝑠, 𝑎) + 𝛼𝑡 [𝑟(𝑠, 𝑎, 𝑠′) − 𝜌𝑡𝑡(𝑠, 𝑎, 𝑠′) + 𝜂𝑚𝑎𝑥𝑎′∈𝐴(𝑠′)𝑄(𝑠′, 𝑎′)] (17) 

Where ρ is the average reward, r(s, a, s') is the transition reward from the current state to the 
next state, and t(s, a, s') denotes the transition time. The average reward is updated when the agent 
chooses the greedy action in the current state by the following equations: 

𝑅(𝑡) ← 𝑅(𝑡 − 1) + 𝑟(𝑠, 𝑎, 𝑠′) (18) 
𝑇(𝑡) ← 𝑇(𝑡 − 1) + 𝑡(𝑠, 𝑎, 𝑠′) (19) 

𝜌𝑡+1 ← (1 − 𝛽𝑡)𝜌𝑡 + 𝛽𝑘 [
𝑅(𝑡)

𝑇(𝑡)
] (20) 

In the above equations, 𝛼 and 𝛽 are the learning rates, and 𝜂 is the positive scalar. The interaction 
between the decision-maker agent, the manufacturer agent, and the environment is shown in Figure 
4. The 𝑄(𝑠, 𝑎) is updated after each action by Eq. (17), and this process continues until the combined 
optimal policy is achieved. 

 

Fig. 4. The RL-based interaction of decision-maker agent 
 

5. Evaluating the Control Policy 
To assess the quality of the control policy acquired by the decision-maker agent, three 

alternatives are considered: The heuristic approach called (s, S)-CBM, simulation-optimization 
technique, and random decision-maker agent. Additionally, the Monte Carlo method is employed to 
compare the results of the proposed method with those of the alternatives.   

 

5.1. (s, S)-CBM Policy  
Push production systems usually use a well-known threshold-type control policy called (s, S). In 

this policy, when the inventory level drops below level s, the production is authorized to increase the 
inventory position to level S. In addition, the production and inventory control policies can be 
integrated with maintenance policies such as corrective maintenance (CM), preventive maintenance 
(PM), or condition-based maintenance (CBM) [42].  

In this research, the (s, S)-CBM control policy has been used to evaluate the obtained control 
policy by the decision-maker agent. The algorithm of the policy is illustrated in Figure 5.  
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Fig. 1. The production system operation under (s, S)-CBM policy 
 

The quality of the solution obtained from the heuristic approach is evidently reliant on the values 
of its parameters. To address this dependency, this paper employs a simulation-optimization 
technique to determine the optimal parameter value of the heuristic policy in each scenario. 
 

5.2. Simulation – Optimization Techniques 
The term simulation-optimization refers to the techniques applied to optimize the stochastic 

problems of parametric optimization [43]. SO involves searching for the value of the input parameters 
of the simulation model in a way that a specific objective is optimized.  

The integrated production, maintenance, and quality control of this research can be formulated 
as discrete parametric optimization. The input parameters are the set of feasible actions in each 
state, and SO can be utilized to find the best action in each state such that the total reward is 
maximized.  

This paper employs a commercial simulation optimization package to find the optimal 
parameter's value of the (s, S)-CBM policy and the optimal policy of the combined optimization 
problem. The SO package integrates metaheuristic approaches such as Scatter Search, Tabu Search, 
and Neural Networks into a single optimization procedure. Figure 6 illustrates the interaction 
between the SO package and the simulation model. 

 

Fig. 2. The simulation-optimization process 
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As shown, the decision variables (which serve as input parameters for the simulation model) are 
determined by the SO package. The simulation model runs for a specific duration, and the cumulative 
reward is then returned to the package. This iterative process persists until the optimal policy is 
obtained. Table 1 outlines the decision variables and the objective functions for optimizing the (s, S)-
CBM policy and the combined policy. 

  
Table 1 
The decision variables and the objective function of the simulation-optimization approach 

Optimization problem Decision Variables Objective Function 

(s, S)-CBM s, S, lr, lm, U Minimizing the cumulative value of 
Equation 11 Combined policy A(s1, s2, s3)∀s1, s2, s3ϵS 

 

The SO process involves tuning parameters and hyperparameters. The number of iterations is 
determined to a point where the algorithm ceases to improve the objective function further. The 
number of replications is calculated based on the Central Limit Theorem (CLT), which suggests that a 
sample size equal to or greater than 30 is often considered sufficient. Here, the minimum of 
replications is set to 30, with a maximum of 100. The stop time for the simulation model fixed at 
10,000 minutes, ensuring a sufficient number of events in the production system. Notably, the 
hyperparameters of the optimization process are automatically tuned by the commercial SO package.  

 

5.3. Random Decision Maker Agent 
As described in Section 4.2, the main goal of the decision-maker agent is to map situations into 

actions to maximize the reward. When the decision-maker agent always chooses the action with the 
maximum expected return, the action selection policy is "greedy." On the other hand, when the 
decision-maker agent chooses the action randomly, the action selection policy is "random." There is 
a well-known action selection policy in RL called "epsilon-greedy" that is illustrated by the following 
expression: 

𝐴𝑡 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝑠)𝑄𝑡(𝑠, 𝑎), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀

𝑎𝑛𝑦 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐴(𝑠)     , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖
 (21) 

Where ε is the probability of taking a random action and argmax𝑎 denotes the value of action 𝑎 

at which the 𝑄(𝑠, 𝑎) takes its maximal value. The parameter 𝜀 real-value is in the range (0,1). The 
𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy ensures that the agent explores the states of the system sufficiently. 

In this research, the ε-greedy policy has been used to obtain the optimal policy by the decision-
maker agent. However, for the random decision-maker agent (Random DMA) alternative, the ε is set 
to 1 to force the agent to select all actions randomly.  

 
6. Numerical Result 

In order to evaluate the efficiency of the proposed method, seven scenarios were conducted, as 
outlined in Table 3. These scenarios cover diverse system conditions and can be categorized as: 

i. The base case (Scenario 1) 
ii. The effect of increasing demand rate and quantity on the performance of the policies 

(Scenarios 2 and 3) 
iii. The simultaneous effect of increasing demand rate and quantity, and the probabilities of 

breakdowns and producing low-quality productions on the performance of the policies 
(Scenarios 4 and 5) 
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iv. The simultaneous effect of increasing production rate, demand rate, and quantity, and 
the probabilities of breakdowns and producing low-quality productions on the 
performance of the policies (Scenarios 6 and 7) 

All scenarios share the input parameters that are illustrated in Table 2. 
 
Table 2 

 Input parameters of the agent-based simulation model 
Imax Bmax dmax Umax fd,p Cp Cm Cr Cb Cq Ch Cs Cl P 

10 10 6 2 
(0.04, 0.04, 0.05, 0.05, 
0.06, 0.07) 

0.5 50 150 300 1.5 0.3 0.6 100 2.1 

 
The stress on the production system escalates from the second to the fifth scenario, gradually 

improving in the last two cases. Nevertheless, the system remains complex, marked by an elevated 
probability of breakdowns and low-quality productions. Consequently, the policies must authorize 
the production, maintenance, and repair activities properly to prevent increases in missed orders and 
breakdowns.  

 
Table 3 
Summary of scenarios 

 1/λp 1/λr 1/λm 1/λd λn 1/λb Bd Qd 

Scenario 1 1 20 2 10 2 25 (0, 0, 0, 0.001, 0.007, 0.01, 1) (0, 0, 0.01, 0.05, 0.1, 0.15, 1) 
Scenario 2 1 20 2 6 2 25 (0, 0, 0, 0.001, 0.007, 0.01, 1) (0, 0, 0.01, 0.05, 0.1, 0.15, 1) 
Scenario 3 1 20 2 5 3 25 (0, 0, 0, 0.001, 0.007, 0.01, 1) (0, 0, 0.01, 0.05, 0.1, 0.15, 1) 
Scenario 4 1 20 2 6 2 25 (0, 0, 0.001, 0.007, 0.015, 0.05, 1) (0, 0.02, 0.05, 0.1, 0.15, 0.2, 1) 
Scenario 5 1 20 2 5 3 25 (0, 0, 0.001, 0.007, 0.015, 0.05, 1) (0, 0.02, 0.05, 0.1, 0.15, 0.2, 1) 
Scenario 6 0.5 20 2 5 3 25 (0, 0, 0.001, 0.007, 0.015, 0.05, 1) (0, 0.02, 0.05, 0.1, 0.15, 0.2, 1) 
Scenario 7 0.5 20 2 6 2 25 (0, 0.01, 0.02, 0.05, 0.07, 0.1, 1) (0, 0.05, 0.07, 0.1, 0.2, 0.25, 1) 

 

The agent-based simulation model of each scenario was evaluated up to 1000 iterations by the 
Monte-Carlo method, and each iteration lasted over 10,000 minutes (7 days) to evaluate the 
obtained policy of the proposed method and the other alternatives. 

 

6.1. Obtaining the Optimal Integrated Policy by the RL-Based Decision-Maker Agent  
As described in Section 4.2, the decision-maker agent has applied the average reward 

reinforcement learning algorithm called R-Smart to obtain the optimal integrated production, 
maintenance, and quality policy. The number of episodes and steps has been set to 20,000 and 
10,000, respectively. Each episode starts with a unique random seed number to capture all the 
events. The positive scalar η is set to 0.999. The learning rate is set to be 𝛼 = 0.01 and 𝛽 = 0.009. 
The parameter for 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 is initially set to be 0.1 and linearly reduced afterward.  

The R-learning average reward ρ obtained by the decision-maker agent during the learning phase 
of Scenario One is depicted in Figure 7. Notably, as the number of learning episodes increases, the 
average reward received by the agent converges. This convergence behavior is consistent across all 
other scenarios as well.  
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Fig. 7. The obtained average reward (ρ) by the RL-based DMA in Scenario 1 

 
6.2. Optimal Parameter's Values of the (s, S)-CBM Policy 

As shown in Figure 5, the (s, S)-CBM heuristic method has five parameters that directly affect the 
efficiency of the algorithm: 

i. The value of lower inventory level s 
ii. The value of upper inventory level S 

iii. The limit of the repair activities 𝑙𝑟 based on the deterioration level d 
iv. The limit of the Maintenance activities 𝑙𝑚 based on the deterioration level 𝑑 and the 

number of authorized maintenance activities 𝑈 
In order to compare the results of the proposed method and (s, S)-CBM policy on the same basis, 

the best values of the listed parameters need to be acquired. So, the agent-based simulation model 
of the production system is modified based on the (s, S)-CBM policy. Then, the input parameters are 
adjusted for each scenario. Finally, the simulation models are optimized by the SO package. The 
number of iterations is set to be 5000, and each iteration contains 30 to 100 replications. Each 
iteration's simulation model stop time is also set to 10,000 minutes. The linear constraints are defined 
to make the S value higher than the s value, and the lm and lr values are greater than zero. The optimal 
parameter's value yielded by the SO package is shown in Table 4.  

  
Table 4 
The optimal value of the (s, S)-CBM policy Parameters 

 s S lr lm U 

Scenario 1 1 2 5 2 0 
Scenario 2 3 4 5 2 0 
Scenario 3 8 9 5 2 0 
Scenario 4 3 4 4 1 0 
Scenario 5 7 9 4 2 0 
Scenario 6 6 7 5 1 0 
Scenario 7 2 5 2 1 0 

 

6.3. Obtaining the Optimal Integrated Policy by the Simulation-Optimization  
The objective of the simulation-optimization method is to minimize the cumulative value of 

Equation 11. In this regard, the number of iterations is set to be 20,000. Since the agent-based model 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 1 (2024) 396-419 

410 
 

 

of the production system is stochastic, each iteration comprises 30 to 100 replications under similar 
conditions, enhancing the reliability and validity of the obtained objective function. Replications stop 
after minimum replications when a confidence level (90%) is reached or replications are continued 
so that the result falls within the confidence level. The simulation model stop time for each iteration 
is set to 10,000 minutes. The SO Package determines a set of state-action pairs in each iteration to 
minimize the objective function. Therefore, the number of decision variables equals the number of 
states of the production system, which is calculated by Equation 5. The decision variables represent 
the authorized action in each state.  

At the end of the optimization process, the best set of state-action pairs is considered the optimal 
integrated policy.  

 
6.4. Comparison between RL-Based Decision-Maker Agent and the Other Alternatives  

Figure 8 illustrates the average cumulative reward of Equation 11 obtained by the proposed 
method and the other three alternatives. The results show that the proposed RL-based decision-
maker agent (RL-based DMA) performed better in most scenarios than the other alternatives. 
However, in some scenarios, e.g., 3 and 5, the heuristic policy has performed slightly better than the 
RL-based policy. For comprehensive assessment, Figure 9 also displays the standard deviation of the 
results obtained by the control policies.  

 

Fig. 8. The cumulative reward (Eq. (11)) of the control policies 
 

According to the probabilistic nature of the simulation model, events vary in each model 
execution. Consequently, low variance indicates effective policy performance across different system 
states. The RL-based policy exhibited the minimum standard deviation. However, despite achieving 
commendable results in average cumulative reward, the heuristic policy consistently showed a higher 
standard deviation compared to other policies.  
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Fig. 9. The standard deviation of cumulative reward (Eq. (11)) of the control policies 
 

For an in-depth understanding of each control policy, the following details outline their 
performance. The average inventory level, missed orders, authorized maintenance, authorized 
repair, machine breakdowns, and low-quality production achieved by the top three policies in each 
scenario are discussed below.  

In Scenario 1, as depicted in Figure 10, the RL-based DMA achieved a lower average inventory 
level. This reduction in holding inventory did not lead to an increase in total missed orders, 
positioning this agent with the minimum number of missed orders. Notably, the RL-based DMA 
prioritized maintenance activities over repair activities, earning it the second rank in machine 
breakdowns and low-quality production.  

The heuristic policy, on the other hand, outperformed in both maintenance and repair activities 
and in producing high-quality products. Although the heuristic policy authorized nearly half the 
number of maintenance activities compared to the RL-based DMA and almost the same number of 
repair activities, its total count of low-quality productions was 25% lower than that of the RL-based 
DMA. 

Contrarily, the SO package authorized more maintenance and repair activities than both the RL-
based DMA and the heuristic policy. Consequently, the lowest number of low-quality productions 
was achieved. However, the emphasis on maintenance and repair activities led to an increase in 
missed orders. 

Fig. 10. The performance of the policies in Scenario 1 
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In Scenario 2, where the demand rate has increased, the RL-based DMA and the heuristic policy 
achieved identical cumulative rewards (Figure 11). The RL-based DMA prioritized low inventory 
holding and authorized more maintenance activities, while the heuristic policy aimed to balance the 
number of maintenance and repair activities to mitigate low-quality productions. 

The SO package, however, authorized more repair activities than maintenance activities, resulting 
in higher breakdowns and low-quality production compared to the other alternatives. Despite this, 
the SO package increased the inventory level to meet the elevated demand rate, leading to a 
reduction in missed orders. 

In Scenario 3, the production system faced more challenging conditions compared to previous 
scenarios. Alongside an increased demand rate, the amount of each demand has also risen. In this 
context, the RL-based DMA performed slightly less effectively than the heuristic policy. The RL-based 
DMA aimed to reduce costs by maintaining lower inventory levels and authorizing more maintenance 
activities (Figure 11). However, this approach led to an increase in the number of missed orders. 

On the other hand, the heuristic policy, by authorizing more repair activities and increasing the 
inventory level, succeeded in reducing the number of missed orders and low-quality productions. The 
SO package, while authorizing more repair activities compared to other policies, still had the highest 
number of breakdowns and low-quality productions. However, the SO's policy managed to yield a 
lower number of missed orders compared to the RL-based DMA.  

In Scenario 4, accounting for the increased probability of machine breakdowns and the 
production of low-quality products observed in Scenario 2, the RL-based DMA effectively maintained 
a lower inventory level and reduced missed orders (Figure 12). The heuristic policy outperformed in 
authorizing maintenance and repair activities, resulting in lower breakdowns and low-quality 
productions. Despite the high inventory level, the SO package achieved fewer missed orders 
compared to the heuristic policy. 

The conditions considered in Scenario 5 are more complex, involving an increased demand rate, 
higher demand amount, elevated probability of breakdowns, and low-quality production. Despite the 
complexity, the holding inventory level for all policies is nearly identical. However, the RL-based agent 
achieved a lower number of missed orders compared to other policies (Figure 12). Similar to previous 
scenarios, the heuristic policy authorized the minimum required maintenance and repair activities, 
resulting in the highest number of high-quality products. 

In Scenario 6, where an increase in production rate is considered, the new system configuration 
has notably improved the performance of the RL-based DMA. This agent achieved superior results in 
all aspects compared to the other policies, maintaining low inventory levels and obtaining the 
minimum number of missed orders, machine breakdowns, and low-quality productions (Figure 13). 
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Fig. 11. The performance of the policies in Scenario 2 and Scenario 3 
 

Fig. 12. The performance of the policies in Scenario 4 and Scenario 5 

 

Fig. 13. The performance of the policies in Scenario 6 and Scenario 7 
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In the final scenario, an increased probability of machine breakdowns and low-quality production 
has been introduced compared to the previous scenario. As illustrated in Figure 13, the RL-based 
DMA demonstrated strong performance across all aspects. The agent achieved the minimum number 
of machine breakdowns and low-quality production by timely authorizing maintenance and repair 
activities. Similar to previous scenarios, the RL-based DMA prioritized maintenance activities over 
repair activities, maintaining a lower inventory level and minimizing the number of missed orders. 

Throughout the scenarios, The RL-based DMA consistently showed a tendency to hold less 
inventory and focus more on maintenance activities. Conversely, the heuristic policy tended to 
authorize the minimum required maintenance and repair activities. However, the behavior of the SO 
package varied across scenarios.  

The RL-based DMA exhibits prominent performance, especially in the last two scenarios. The 
heuristic policy also demonstrated promising results in all scenarios due to parameter values 
obtained through SO. Despite this, the optimal integrated policy produced by the SO package did not 
outperform the other policies.  

It's noteworthy that the RL-based DMA determines the policy in every decision epoch, with a 
limited feasible action set. The agent observes the reward of the corresponding action in the next 
step, leading to policy improvement with each visit to a specific state. In contrast, the SO algorithm 
must decide on all state-action pairs at every simulation model iteration. Consequently, the 
computational cost of acquiring the optimal integrated policy significantly increases with a large 
number of state spaces. 

 
7. Conclusion and Discussion 

This paper investigated the joint optimal production, maintenance, and quality policy in a 
deteriorating single-machine production system. While extensive research explores the joint optimal 
policy, limited attention is given to the simultaneous consideration of production, maintenance, and 
quality. Moreover, existing studies often overlook the crucial assumption of limited maintenance 
activities between two consecutive repair activities. In addition, the literature that applied agent-
based modeling and reinforcement learning is rare. This paper aimed to investigate the production 
model with a more realistic assumption and evaluate the combination of agent-based modeling and 
reinforcement learning to obtain the joint optimal policy. 

To cover the gap, we formulated the problem as a continuous semi-Markov decision process, 
facilitating real-time decision-making. The solution involved employing average-reward 
reinforcement learning in conjunction with agent-based modeling. To assess the quality of the 
acquired policy, we subjected it to evaluation by the heuristic policy, simulation-optimization 
method, and the random decision-maker agent.  

The study encompassed seven scenarios, strategically designed to explore policy behavior under 
varying conditions, including increasing demand, probability of breakdowns, probability of producing 
low-quality products, and changes in the production rate of the system.  

Policy evaluation was conducted based on the average and standard deviation of the cumulative 
reward. The average insights into the overall performance of the policy, while the standard deviation 
offered a measure of its stability amidst stochastic events within the system.  

The results highlight the superior performance of the proposed RL-based method across most 
scenarios, consistently achieving better outcomes than the alternatives and displaying the lowest 
standard deviation of rewards. The heuristic policy also demonstrated an acceptable average 
cumulative reward, albeit with a higher standard deviation than the alternatives. SO package secured 
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a third-place ranking in cumulative average reward and second place in the standard deviation of 
rewards.  

Notably, the heuristic policy slightly outperformed the RL-based policy in Scenarios 3 and 5. 
Scenario 3 incorporated an increased demand and probability of breakdowns, while Scenario 5 
introduced an augmented demand, breakdown probability, and probability of producing low-quality 
products. It is important to note that the demand rate in both scenarios is less extreme than in 
Scenario 4 and 6. The results suggest that specific algorithms may yield better average cumulative 
rewards under certain conditions of the production system. However, as emphasized earlier, the 
comprehensive evaluation of policy performance should consider both cumulative reward and the 
standard deviation.  

The reason for the higher standard deviation in the heuristic policy is that, regardless of the 
stochasticity of the production system, the heuristic policy consistently adopts a specific approach, 
which is considered a low performance in some system states. In contrast, the RL-based policy 
benefits from the decision-maker agent repeatedly observing each state, updating the appropriate 
state-action value based on acquired rewards. In the SO policy, the replication process in each 
iteration contributes to the reduction of the standard deviation.  

The average cumulative reward of the proposed RL-based method closely aligned with the 
heuristic policy in scenarios where the production system was under pressure. This similarity arises 
because the learning agent tends to perform actions similar to the heuristic algorithm. However, The 
RL-based method demonstrated significantly superior performance in scenarios characterized by a 
balance between production and demand. In such cases, the RL-based decision-maker agent has 
greater flexibility in making different decisions. 

In general, it can be asserted that the RL approach and the metaheuristics in connection with the 
simulation model (SO) approach will lead to a better optimal policy than the heuristics in the 
stochastic systems. Despite its effectiveness in some instances, the heuristics may have limitations in 
providing high-quality actions for all stochastic states due to its high variances. The heuristics 
approach is often based on approximations, rules of thumb, or expert knowledge, which may not be 
optimal or applicable in every scenario. In the SO approach, the simulation model is replicated varying 
number of times to converge to the real objective value, consequently reducing the variance of the 
policy. On the other hand, the RL agent can adapt and improve its policy over time based on feedback 
from the stochastic environment. This adaptive nature empowers the agent to discover better 
solutions, potentially surpassing heuristic approaches in terms of policy quality with low variances 
across a broader range of system states.   

As the dimensions of the problem increase, and consequently, the number of possible states 
expands, RL, especially when leveraging neural network-based learning (Deep RL), could prove more 
efficient in obtaining the optimal joint policy. In contrast to SO methods, RL has the capability to 
explore a subset of states and provide an optimal joint policy for the problem.  

Finally, it could be concluded that combining agent-based modeling with RL-based decision-
maker agents eases the integration and interactions between agents. In addition, RL has excellent 
potential to solve multi-state optimization problems. However, there are some limitations as follows: 

i. Building an agent-based model of the production system is more time-consuming than 
discrete event simulation. 

ii. The algorithm is highly related and sensitive to parameters such as learning rates, 
scalars, number of steps and episodes, and exploration policy, making the calibration 
process time-consuming. 
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iii. Despite the convergence of the policy, the acquired policy may not necessarily be the 
best. However, utilizing a unique random seed number in each episode has been 
observed to lead to a better policy in stochastic systems.  

iv. The selection process of different RL-based algorithms, along with the trial-and-error 
calibration of each algorithm, poses significant challenges in the implementation of 
reinforcement learning.  

For future work, this research can be extended with the following suggestions: 
i. Explore additional scenarios to evaluate policies using different combinations of 

demand, breakdown probabilities, probability of low-quality production, and production 
rate. 

ii. Investigate the combination of meta-heuristic methods with RL algorithms for 
parameter calibration, reducing algorithm convergence time, and enhancing the quality 
of the acquired policy. 

iii. Explore the application of other reinforcement learning algorithms, such as Q-learning, 
to compare their efficiency in achieving the joint optimal policy. 

iv. Introduce greater complexity, e.g., multi-production machines and multi-products, and 
explore the application of multi-agent RL or Deep RL. 

In addition to the aforementioned areas for future work, there is a proposal to evaluate the time 
required to obtain the joint optimal policy through SO and RL methods.  
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